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EXECUTIVE SUMMARY 

With energy and climate policy at the forefront of domestic and international politics, 

scientists, policy-makers, companies, and citizens are seeking cost-effective strategies for 

reducing fossil fuel consumption and lowering emissions of climate change-causing 

greenhouse gases. Some promising methods, such as alternative energy sources require 

significant investment of both time and money, and will likely not result in significant 

energy or carbon savings for many years. Searching for ways to reduce carbon emissions 

more immediately, policy research groups and the Obama Administration have identified 

energy-efficiency measures, and specifically residential retrofits, as a realistic source of 

significant energy savings. The Obama Administration has increased funding for 

residential retrofitting programs, including the Weatherization Assistance Program 

(WAP), which funds programs nationwide that weatherize low-income houses to reduce 

space conditioning energy consumption. WAP evaluations show these programs are net-

present-value positive not only because of the direct value of energy cost savings, but 

also because of the indirect value of, among other things, job creation, improved 

environmental quality, lower energy prices, and reduced dependence on foreign energy 

sources.  

 Multiple studies have evaluated the cost-effectiveness of all residential retrofits at 

a nationwide scale, but do not thoroughly address how energy consumption and the value 

of retrofits vary geographically because of variations in climate and housing stock, 

particularly low-income housing stock. Analysis of national energy consumption data 

reveals that while average energy consumption among all houses for purposes other than 

space conditioning (e.g. lighting, appliances, water heating) is roughly constant, energy 
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consumed for space conditioning varies widely among climate zones and Census regions 

due to differences in space conditioning demands and physical differences in residential 

housing construction type and space conditioning equipment. 

 Motivated by the importance of understanding how investments in weatherizing 

low-income houses affect the cost of saving energy and reducing carbon emissions, the 

objective of this thesis was to develop an approach that can evaluate weatherization cost-

effectiveness at a scale finer than the national level. This approach consisted of using the 

Home Energy Saver (HES) energy modeling software to model energy use in low-income 

urban housing stocks in six urban areas in varying climate zones in the U.S. HES relies 

on user input, housing stock statistics, and engineering thermodynamic models to 

approximate whole-house energy consumption, potential energy savings with various 

retrofit treatments and the costs of such treatments. To specifically model the low-income 

urban housing stocks, HES was driven with data from the American Housing Survey 

(AHS), a biennial survey of roughly 55,000 homes nationwide that includes information 

on house characteristics—such as house vintage, conditioned floor area, number of 

floors, and space conditioning equipment—and information on household 

characteristics—such as household size and income. After modeling energy savings, 

average state-wide energy prices and electricity energy mix were used to determine how 

these energy savings translated into energy cost and carbon abatement. 

 Because past evaluations of energy modeling software like HES indicate that 

projected energy savings typically exceed actually energy savings by up to 50% as a 

result of some combination of shortfall (technical estimation error or improper 

weatherization treatment installation) and take-back (behavioral energy consumption 
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changes), modeled energy consumption was compared to energy savings measured in the 

Philadelphia Gas Work’s Conservation Works Program. The comparison between 

observed and modeled energy savings in low-income Philadelphia housing stock revealed 

that the model performed reasonable well in estimating pre-retrofit energy consumption. 

Regarding energy savings, the model slightly underestimated observed energy savings 

from programmable thermostats and attic insulation, but overestimated observed saving 

in every other treatment scenario (air sealing and the various combinations of air sealing, 

attic insulation, and programmable thermostats). The model performed particularly 

poorly when modeling treatment combinations that included blower-door guided air 

sealing, suggesting that either the model overestimated pre-retrofit leakage or that 

observed savings were uncharacteristically low due to take-back or improper air-sealing, 

as has been commonly observed in other weatherization assistance (Wx) programs. 

 To evaluate how weatherization energy savings and cost-effectiveness in low-

income houses vary geographically, six metropolitan areas from different climate zones 

and Census regions were selected for modeling based on data availability and on how 

representative that metropolitan area’s entire urban housing stock was of the entire urban 

housing stock in that Census region. The central cities of these metropolitan areas were 

Milwaukee, Detroit, Philadelphia, Orlando, Seattle, and Los Angeles-Long Beach. 

Modeled energy consumption mirrored nationwide residential energy consumption trends 

indicating that houses in colder climates consume more energy than those in warmer 

climates, and as expected, weatherization treatments were more effective—that is, energy 

savings were greater—for cities in colder climate zones than in warmer climate zones. 

Regional differences in low-income housing stock result in different costs of retrofits. In 
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particular, larger attic sizes per conditioned floor area in Orlando, Los Angeles-Long 

beach, and Seattle resulted in higher projected installation costs for attic insulation 

compared to the other three cities. Net Present Value (NPV) calculations showed that all 

combinations of weatherization treatments were profitable in almost every instance, 

especially in Orlando, where the high price of space conditioning made retrofitting 

treatments among the most profitable calculated for any city. 

 Using information about each state’s energy mix for electricity, the carbon 

abatement potential of weatherization treatments were calculated for each of the cities. 

Carbon savings showed similar effectiveness trends as energy savings, with colder 

climates saving more than warmer climates, with the exception of Orlando. Carbon 

abatement from weatherization in Orlando, where carbon-intensive electricity provides 

all space conditioning energy, did not follow this trend, but was instead among the largest 

of the six cities modeled. Even after applying model error correction factors and a 50% 

installation cost inflation, the NPV of most treatment scenarios in all six cities were 

around or below recently proposed U.S. carbon prices, indicating that even if these 

measures aren’t strictly NPV-positive at present (though most of them are), the 

weatherization measures modeled would be expected to be profitable should the 

government institute proposed carbon pricing. 

 In conclusion, the results of this thesis demonstrated the utility of city-level 

weatherization cost-effectiveness analysis. The results also suggested the value of such 

analysis, since geographic variations in climate, housing stock, and energy prices all 

result in widely varying levels of cost-effectiveness. The results indicated that 

programmable thermostats are consistently profitable investments over widely different 
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geographical areas, although the relative cost-effectiveness of other treatments varies 

among cities and whether the objective is to minimize end-use energy (i.e. maximize 

residential energy-efficiency) or minimize residential carbon emissions. Fully utilizing 

this research approach to identify where weatherization treatments can have the best 

results will require careful considerations of the priorities of weatherization programs. 

 The major limitation of this analysis was data availability, both housing stock data 

to drive HES and Wx impact evaluation data to compare modeled to observed results. 

HES is a comprehensive model that accepts very detailed descriptions of the individual 

houses modeled, but the availability and depth of data describing different urban housing 

stocks limited analytical thoroughness. Additionally, more detailed information on actual 

energy savings from Wx program investments would facilitate a more thorough 

assessment of HES’s validity, though it is expected that the discrepancy between 

modeled and observed energy savings is attributable to take-back or improper installation 

more than errors in the model itself. If this is the case, modeled savings should therefore 

be interpreted as the energy savings possible with proper installation and assuming no 

changes in residents’ energy consumption behavior. Proper installation training and 

resident education are necessary to ensure that a higher percentage of potential energy 

savings is realized. 

 The approach described in this thesis is applicable for modeling typical energy 

consumption and retrofit savings in housing stocks other than the low-income urban stock 

examined. Future investigations could, for instance, modeling non-low income houses or 

the housing stock at a scale larger than the metropolitan area. In each case, this approach 

can be useful in comparing the expected cost-effectiveness of weatherization among 
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different housing stocks for the purpose of prioritizing which housing stocks to target for 

lowering residential energy consumption, household energy bills, and residential carbon 

emissions. 

 

In conclusion, the major finding of this thesis suggest the following: 

• Most weatherization treatments examined are profitable 

• Greater energy efficiency will be realized by retrofitting houses in colder climates 

• Regional variations in energy prices significantly affect the cost-effectiveness of 

weatherization retrofits 

• Greater carbon efficiency can be realized by retrofitting houses with electric space 

conditioning 

• Weatherization strategies aimed at energy savings, carbon savings, and cost-

effectiveness may not lead to the same conclusion 

• Programmable thermostats provide cost-effective savings in any setting 
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1 INTRODUCTION 

This chapter discusses the motivation for analyzing the cost-effectiveness of urban 

weatherization assistance programs. The first section briefly describes the concept of 

weatherization and the history of weatherization assistance programs in the United States. 

The second section reviews the present understanding of weatherization’s cost-

effectiveness and how to measure it. This chapter concludes with a section describing the 

specific purpose of our research project and briefly summarizes our approach.   
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1.1 INSULATION, WEATHERIZATION, AND ENERGY-EFFICIENCY 

This section provides a brief background about the history of weatherization and its 

benefits in the U.S. The first subsection introduces the concept of weatherization and 

describes how weatherization became a centerpiece of U.S. environmental and economic 

policy. The second subsection describes the benefits—both realized and potential—of 

residential weatherization and specifically weatherization assistance (Wx) programs 

1.1.1 Background 

 Insulation has been an essential part of building design for thousands of years. 

From the adobe houses of the Pueblo Native Americans to the thatched huts of the South 

Sea Islanders, civilizations across the world have used materials like cork, straw, sea 

grass, and clay to keep buildings more comfortable by preventing the exchange of heat 

between indoors and outdoors (Close 1947; Lotz 2006). The mass production of 

manufactured insulation used today—such as rock wool, organic foam, and glass fiber—

began after World War I, and from that time, buildings have been made increasingly 

well-insulated to minimize space conditioning energy consumption (Lotz 2006). 

 Building insulation gained national attention during the energy crises of the 1970s 

as the U.S. government looked for ways to reduce energy consumption, decrease U.S. 

dependence on foreign energy sources, and relieve the impact of high energy prices on 

low-income households (US DOE 2008). Shortly after the first oil embargo in 1973, the 

Community Services Administration i funded the first residential retrofit project in 

Maine, where roughly 90% of homes used heating oil (US DOE 2008). The objective of 

this program was to reduce energy consumption and lower energy bills by sealing 

                                                 
i The Community Services Administration is now a part of the Office of Community Services under the 
Department of Health and Human Services 
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building envelope leaks. These retrofitting processes, initially classified as 

“winterization,” eventually became known as “weatherization” ii to reflect terminology 

used in similar residential retrofitting programs developed across the country (Rios 

1981). In 1976, the Energy Conservation and Production Act created the Weatherization 

Assistance Program (WAP) under the Department of Energy (DOE) to provide funding 

and technical guidance to facilitate the creation and operation of weatherization 

assistance programs across the country (US DOE 2008, 2009). WAP still exists today, 

and to date it has sponsored weatherization programs that have retrofitted more than 6.2 

million low-income houses across the country at a present rate of approximately 100 

thousand houses per year.  

 After the 1970s energy crisis, energy prices returned to—and have basically 

remained at—relatively stable levels until recently. Although energy prices are presently 

abnormally low as a result of the global financial crisis, prior to the economic downturn 

energy prices rose sharply to 30 year highs (Figure 1.1). From 2003-2008, residential 

electricity and natural gas prices rose 30% and heating oil prices rose 135% (Nevin 

2010). The price of oil has already largely recovered, returning to 2007 prices of roughly 

$80 per barrel (EIA 2010), and the Energy Information Administration (EIA) projects 

that overall energy prices will resume escalating toward record highs in the coming years 

                                                 
ii Although the terms are sometimes used interchangeably, there is a distinction between insulation and 
weatherization. Generally, insulation measures seek to reduce conductive heat gain or heat loss by 
installing thermally resistant materials. Weatherization measures seek to reduce convective heat gains or 
losses by sealing a building to reduce infiltration. In practice, insulation and weatherization are frequently 
coupled, as building insulation requires some level of weatherization to properly function, and insulation to 
some extent blocks air leakage. As many, but not all, weatherization assistance programs include insulation 
measures, we will use the term weatherization as an umbrella term to refer to both insulation and 
weatherization measures unless specified otherwise. Weatherization programs sometimes also include 
tuning, upgrading, or replacing heating equipment, such as malfunctioning boilers. Although these 
measures do not strictly reduce conductive or convective heat transfers but do reduce energy loss by 
increasing efficiency, these measures are also sometimes categorized as weatherization. 
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as the rapidly growing economies like China and India compete for a larger share of 

world energy consumption (EIA 2009d, e). 

 In addition to the threat of continually escalating energy prices, growing concerns 

over global climate change—and Americans’ disproportionate contribution to it—have 

also contributed to the recently renewed interest in weatherization. Until 2006, the U.S. 

was the single-largest emitting country of the greenhouse gas (GHG) carbon dioxide 

(CO2), the most highly emitted GHG worldwide (IPCC 2007). Although China now emits 

slightly more CO2 than the U.S., each of these two countries emits roughly 20% of global 

CO2 emissions. In the U.S., 93% of GHG emissions result from the production and 

consumption of energy (John Horowitz 2009), and 90% of that energy comes from fossil 

fuels iii, the use of which is the single largest and fastest growing source of CO2 emission 

(IPCC 2007). Studies in academia (e.g. Pacala and Socolow 2004) and the energy 

industry (e.g. EPRI 2009) recognize that energy efficiency is among the most viable 

options for decreasing fossil fuel consumption and consequently reducing GHG 

emissions. Reflecting on cost-effective measures to reduce energy consumption, 

Secretary of Energy Steven Chu has said, “Energy efficiency isn’t just low hanging fruit; 

it’s fruit laying on the ground.” (Charles 2009). Energy-efficiency is widely considered to 

be cost-effective and can be implemented quickly, unlike other likely carbon-mitigating 

options like alternative energy which, as illustrated in Figure 1.2, energy analysts project 

to take many years before gaining significant market share even at high growth rates 

(EIA 2009b).  

                                                 
iii EIA reports that U.S. energy consumption reached 101.5 billion MMBTU in 2007. The energy sources 
were liquids (e.g. oil, gasoline), 40 billion MMBTU; natural gas , 24 billion MMBTU; coal, 23 million 
MMBTU; nuclear, 8 billion MMBTU; hydropower, 2 billion MMBTU; and non-hydopower renewables, 4 
billion MMBTU. Source: data from Figure 4 (EIA 2009e).  
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 Energy-efficiency has also recently earned attention as a means of stimulating the 

economy. The American Recovery and Reinvestment Act (ARRA) of 2009, invests a 

total of $65 billion in the energy sector (Recovery Accountability and Transparency 

Board 2009), including $500 million for the creation of jobs in energy efficiency and 

renewable energy (111th United States Congress 2009a) and $5 billion to expand the 

Weatherization Assistance Program (WAP) (111th United States Congress 2009a sec. 

H.R.1-24). On December 8, 2009, President Obama announced plans for the Homestar 

Energy Efficiency Retrofit Program that would reimburse homeowners for purchasing 

energy-efficient appliances and installing insulation, allegedly creating tens of thousands 

of jobs and reducing the equivalent energy of three coal-fired power plants per year 

(Office of the Press Secretary 2010).  

 The Obama Administration has demonstrated that its commitment to energy-

efficiency extends beyond this period of economic recovery. In February 2010, President 

Obama released his budget proposal for Fiscal Year (FY) 2011, which includes half a 

billion dollars for developing and advancing energy-efficient technologies in vehicles, 

buildings, and industrial processes. This proposal also includes a $300 million budget for 

WAP, marking a 43% increase from FY 2010 (US DOE 2010).  
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Figure 1.1. U.S. Energy Prices by Fuel. Energy prices peaked in 2008 before falling as 

a result of the global economic downturn in 2008. Once the economic recovers, energy 

prices are expected climb to record highs. Data to the left of the dashed line (at year 

2008) represents historical energy consumption, and data to the right of the dashed 

line are EIA projections.  Based on Figure 1 (EIA 2009e) 
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Figure 1.2. U.S. Energy Consumption by Fuel. From 1980 to present, total energy 

demand has grown, but the share of renewable energy has been small and growth was 

stagnant. Data to the left of the dashed line (at year 2006) represents historical energy 

consumption, and data to the right of the dashed line are EIA projections. Based on 

Figure 4 (EIA 2009e). 
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1.1.2 Benefits of weatherization 

 There are many different benefits to weatherization, both energy and non-energy 

related. One study examining the potential for non-transportation-related energy-

efficiency suggests that, by 2020, cost-effective energy-efficiency measures, including 

weatherization, can result in a 23% reduction in energy consumption below the business-

as-usual projection, saving 4.2 quadrillion BTU (Granade et al. 2009). Of the projected 

energy savings through efficiency gains, residential buildings represent a substantial 

source: in the U.S., residential buildings account for 21%, or 21.5 quadrillion BTU, of 

national primary energy consumption (Figure 1.3) and 33%, or 1.4 quadrillion BTU, of 

the profitable projected energy-efficiency gains outside the transportation sector 

(Granade et al. 2009).  

 Aside from lower energy bills, reduced energy consumption includes several 

environmental co-benefits including reduced GHG emissions and regulated air pollution. 

Residential buildings are responsible for 23% of the country’s energy-related carbon 

dioxide (equivalent) emissions (EIA 2009b). One study estimates that energy savings 

from insulation retrofits would result in 3,100 fewer tons of particulate matter PM2.5, 

100,000 fewer tons of NOx, and 190,000 fewer tons of SO2 per year, creating public 

health and economic savings of $1.3 billion and $5.9 billion per year, respectively (Levy 

et al. 2003).  

 These environmental benefits help contribute to making WAP a highly net present 

value (NPV) positive public assistance programs. The DOE reports that that NPV of 

lifetime energy savings outweigh Wx retrofit costs by, on average, a ratio of 1.54 (Office 

of Energy Efficiency and Renewable Energy 2008). These evaluations also identified 

indirect, non-environmental, public and private benefits including job creation, lower 
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energy costs for those homes not participating in Wx programs, and increased national 

security (Schweitzer and Tonn 2002).  

 Weatherization programs create jobs performing energy audits and retrofits, as 

well as jobs for those administering the retrofitting programs. And frequently many of 

these jobs go to people living in the low-income communities served by the Wx program.  

 In many cases, utilities provide low-income households with lower energy prices 

subsidized by customers that pay full rate. Reducing energy consumption in low-income 

households can lead to lower energy costs for not only those households receiving 

retrofitting treatments, but also for the standard ratepayer since the utility sells less 

subsidized energy.  

 Reduced consumption of fossil fuels encourages energy independence and is 

beneficial for national security. The U.S. imports roughly 1/3 of its energy 

(Brownsberger 2008), much of which comes from politically volatile regions with 

regimes that are either themselves hostile toward the U.S. or host groups that are hostile 

towards the U.S. 

 Analysts value these non-energy savings at $1.15 for every dollar invested in Wx 

program. Including the $1.54 per dollar invested from energy savings brings the total 

value of the Wx programs to $2.69 for every dollar spent (Office of Energy Efficiency 

and Renewable Energy 2008). Other evaluations conservatively estimate a WAP benefit-

to-cost ratio of 1.61 for energy savings alone, and 1.72 for total societal value (Brown 

and Berry 1993). 

In addition to low-income households being those most in need of lower energy 

bills, low-income housing is among the least energy efficient and therefore among the 
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most cost-effective to retrofit. Low-income houses are on average 20% more energy 

intensive than non-low-income houses (D&R International, Ltd 2009 sec. 2.9.10). In their 

mathematical analysis of a national leakage database, McWilliams and Jung (2006) found 

that leakage iv is 145% higher in low-income houses than non-low-income houses 

(McWilliams and Jung 2006 p. 50).  

Conventional wisdom suggests that low-income houses tend to be energy-

inefficient because low-income residents or their landlords tend not to invest in 

retrofitting treatment. This tendency could exist because they lack the necessary capital, 

they do not have access to information about the long-term cost-effectiveness of 

retrofitting, or as high relocation rates v may suggest, they lack the incentive to invest in a 

building they may not own or live in long enough to recover their economic investment. 

Wx programs provide the mechanism to overcome these market failures and improve 

residential energy efficiency. 

Residential
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Transportation

28%
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Commercial
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Figure 1.3. U.S. Primary Energy Consumption by Sector. The residential energy 

sector accounts for almost one-fourth of total energy consumption. Data source: (EIA 
2009e). 

                                                 
iv Leakage refers to convective heat gains or losses due to air infiltration. Some academic studies report that 
infiltration accounts for approximately 50% (Sherman and Matson 1997) of total space condition energy 
use nationwide, but non-academic professionals generally estimate that leakage accounts for only one-third 
of space conditioning energy use (Blasnik 2009b). 
v 48% of households at or under 150% federal poverty line—18.4 million households—rent their homes, 
representing 56% of the renting population of 33 million households (Energy Information Administration 
2008). 
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1.2 IDENTIFYING COST-EFFECTIVE WEATHERIZATION OPTIONS 

This section provides an overview of typical measures used to project and measure 

energy savings resulting from weatherization retrofits with reference to specific 

applications. The first subsection briefly describes how energy auditors and Wx program 

evaluators model the cost-effectiveness of weatherization measures. The second 

subsection describes the main components of energy modeling and highlights some of its 

applications in weatherization literature. The final subsection describes how WAP 

evaluations and national consumption data both suggest that the effectiveness of 

weatherization vary geographically due to variations in climate and housing stock; this 

subsection also discusses how the cost-effectiveness of weatherization varies 

geographically due to differences in energy prices. 

1.2.1 Background 

 Starting in 1990, the introduction of energy auditing software allowed 

weatherization service providers to comprehensively analyze houses individually to 

determine the most cost-effective weatherization treatments. DOE credits these 

comprehensive energy audits for an 80% increase in energy savings per dwelling over the 

span of 1989 to 1996 (US DOE 2008). 

 Based on energy audit and building simulation software, conventional wisdom 

within the building science community suggests that reductions in household energy 

consumption of at least 30%—equivalent to national energy consumption reduction of 

approximately 6.7% vi—are possible through a combination of retrofits that increase the 

energy-efficiency of space conditioning (i.e. heating and cooling), water heating, lighting, 

                                                 
vi As displayed in Figure 1.3, residential energy accounts for 22% of total US energy consumption. 
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and appliance end-uses. Studies conducted by a variety of public interest and research 

institutes refer to similar projected savings. The Center for American Progress, recently 

published a report asserting that cost-effective retrofits using existing technology could 

produce energy savings of 20 to 40% (Hendricks et al. 2009). Similarly, a recent National 

Center for Healthy Housing article outlines an energy-efficiency stimulus package that 

would reduce low-income energy bills by 30-50% (Nevin 2010). Secretary of Energy 

Chu has testified to Congress that implementing existing energy-efficiency technologies 

in new buildings can reduce their energy consumption by 40%, and cost-effective 

retrofits in older buildings can halve building energy consumption (Charles 2009). More 

specifically but anecdotally, EAM Associates, a New Jersey-based consulting group 

specializing in energy audits, audited five low-income houses in Trenton and projected 

that cost-effective retrofits could decrease space heating energy consumption by an 

average of 38% (Weissinger et al. 2009). 

1.2.2 Energy modeling 

EAM’s estimates and other reports with a similar focus base their analysis on 

energy modeling software calculations. There are several different types of auditing 

software, each of which uses different models to estimate energy use, suggest retrofit 

measures, and project energy savings based on inputs about the physical characteristics of 

the building and how its occupants use energy. The efficiency of a building’s heating and 

cooling systems depend on how the heating and cooling is produced, distributed and 

ultimately lost. The production and distribution of heat depends largely on the technical 

specifications of the heating and ventilation system. Buildings lose heat mainly through 

conductive and convective transfers through the thermal envelope. These transfers can be 
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minimized by repairing any dilapidated surfaces in the thermal envelope, installing 

insulation, and air-sealing the building shell. Finally, how its occupants use energy is a 

behavioral variable. Obviously if an occupant leaves a window open in winter while the 

house is heating, the building is not efficiently heated. Technologies like programmable 

thermostats can also affect space conditioning consumption as they provides a simple, 

automatic way to turn down the space conditioning equipment when less conditioning is 

needed, such as during sleeping hours or during the day when occupants are not at home.   

 One of the most recent and thorough analyses of the current state of energy 

efficiency is McKinsey & Company’s Unlocking Energy Efficiency in the U.S. Economy 

(Granade et al. 2009). In this report, the authors calculated the expected costs and 

benefits of residential retrofitting using the Home Energy Saver (HES) model driven with 

data from the Residential Energy Consumption Survey (RECS). HES is a web-based 

energy model developed by the Lawrence Berkeley National Laboratory (LBNL) that 

estimates building energy use based on user-provided building descriptions. It also 

provides retrofitting recommendations and corresponding energy savings projections 

(EIA 2009a). RECS is a national area-probability sample study conducted by the Energy 

Information Administration (EIA) that collects energy-related data for occupied primary 

housing units and includes housing unit physical characteristics and household 

descriptions. By analyzing RECS data through HES, Granade et al. estimate that 

retrofitting existing buildings can produce almost 40% energy savings by the year 2020 at 

a net present value of $41 billion.  

 Past evaluations of energy models question the capability of energy models, such 

as the one Granade et al. used, to predict actual energy savings. Comparisons of energy 
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savings projected using energy modeling software with measured energy savings suggest 

that modeling software typically overestimates savings by 30-50% (Berger and Carroll 

2007). Past evaluations of retrofit effectiveness reveal that retrofits do not always lead to 

reduced energy consumption: an analysis of RECS data from 1981-1983 found that only 

51% of retrofitted homes saved energy, while 29% consumed the same amount of energy, 

and 20% consumed more energy (Longstreth and Topliff 1990). Discrepancies between 

modeled and observed savings are classified as “rebound effects,” primarily caused by 

some combination of “shortfall” and “take-back.” “Shortfall” is a technical estimation 

error that occurs when engineering projections overestimate actual energy savings. 

Improper installation of energy-saving measures (such as attic insulation or window 

caulking) can reduce savings by 20-30%, and energy modeling simplifications can 

overestimate savings by 50% (Sorrell 2007). “Take-back” occurs when end-users change 

their energy-consumption behavior after energy-savings measures are implemented, 

resulting in decreased savings of up to 50% (Martin and Watson 2006). One frequently 

observed example of take-back is when end-users set indoor temperatures to a more 

comfortable 1 to 3°F higher after receiving insulation upgrades, decreasing energy 

savings by 15 to 30%. 

 Because of these significant modeling shortcomings, there is reason to question 

energy savings projection derived from their use. The only actual way to measure energy 

savings is to compare a household’s energy consumption before and after retrofitting. 

These comparisons must be normalized for weather conditions, since energy used for 

space conditioning depends on outside weather conditions. Because of weather variations 

and other factors, it is standard practice to use an entire year of energy consumption 
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before and after retrofitting in order to determine energy savings. The industry standard 

for analyzing these data is the Princeton Scorekeeping Method (PRISM). PRISM is a 

statistical model developed at Princeton University that processes weather data and a year 

of monthly energy bills to produce a weather-normalized measure of energy consumption 

(Fels 1986). 

1.2.3 Geographic variations 

 In addition to the risks of modeling error discussed above, one limitation of the 

McKinsey & Co’s reports is that they project savings on the national scale. Such 

nationwide analysis can be useful, for example, in comparing the cost-effectiveness and 

scale of energy savings achievable from residential retrofits to other national energy-

saving strategies such as wind energy or greater automobile fuel efficiency. But for the 

purposes of evaluating Wx programs on a regional basis, it is important to consider that 

energy savings and the cost-effectiveness of weatherization treatments may vary 

substantially depending on the location of the retrofitted house. For example, a 1993 

nationwide evaluation of the WAP-sponsored retrofitting programs found that retrofits 

were more cost-effective in cold and moderate climates than in hot climates (Brown and 

Berry 1993). The evaluators identified different retrofitting approaches as the primary 

sources of this discrepancy: Wx programs in cold and moderate climates were more cost-

effective because of their focus on inexpensive but effective measures like energy audits, 

leakage control and insulation, while programs in hot climates focused on door and 

window replacement, which are less cost-effective measures.  

 While different retrofitting approaches may be responsible for past 

inconsistencies in retrofitting effectiveness, there are other reasons to suspect that 
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weatherization may be more effective in colder climates. Analysis of RECS data shows 

that average household energy consumption is higher in colder climates than in warmer 

climates. Figure 1.5 shows how end-use energy consumption varies by climate zone 

(Figure 1.4 shows the boundaries for climate zones). As seen in this figure, while energy 

use for water heating, lighting, and appliances are relatively independent of climate zone, 

space conditioning energy consumption can vary dramatically between climate zones. 

Even if retrofitting treatments have the same relative effectiveness (i.e. efficiency 

improvement) across climate zones, houses in climate zones that initially consume 

greater quantities of energy for space conditioning will reap greater energy savings from 

weatherization treatments. 

 Climate variations certainly affect the effectiveness of different retrofitting 

measures, but variations in the regional housing stock do as well. Due to continually 

improving building technologies and building practices, newer houses tend to be better 

insulated and more tightly sealed than older houses. Statistical analysis of national 

leakage data showed that among houses that had never received weatherization 

treatments, leakage rates increased approximately 1% for each year since the house was 

built (McWilliams and Jung 2006).  

 Sherman and Matson (1997) observed that the Northeast and Midwest regions 

contain the leakiest houses, which also happen to be the regions with the oldest housing 

stock (Figure 1.6 shows region definitions) according to U.S. Census data. The median 

house age in the Northeast and Midwest is 53 and 41 years, respectively, while the South 

and West are more newly developed regions with median house ages of 32 and 34 years, 
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respectively vii. Figure 1.7 illustrates in more detail how housing stock age varies across 

regions. Figure 1.8 shows how household energy consumption varies with region, though 

as there is some correlation between region and climate zone, it is unclear how much of 

these variations are due to housing stock differences rather than climate differences.  

 Differences in construction characteristics and HVAC equipment are also 

responsible for some regional variations in energy consumption and potential energy 

savings. For example, statistical analysis of national leakage data shows that houses with 

crawlspaces or unconditioned basements are an average of 8% leakier than comparable 

houses with conditioned basements or concrete slab foundations (McWilliams and Jung 

2006). The type of heating equipment is another important factor for space conditioning 

energy consumption. Per unit of end-use space heating energy consumption, natural gas 

heating systems currently in most homes are less efficient (78%) than their electric 

counterpart (~98%) (Mills 2008). Trends in construction characteristics and HVAC 

equipment are correlated with climate and region as well. RECS analysis shows that 

houses in most cold Census divisions tend to have gas heaters and basements, but houses 

in the warmer Census divisions are built on concrete slabs, and most houses in the South 

Atlantic Division use electricity for heating (Mills 2008). 

 Regional differences in energy prices will also affect the cost-effectiveness of 

retrofits. Energy prices vary across the country depending on the local energy market, 

which in turn vary depending on factors like energy infrastructure and energy policies at 

the state, or even municipal level.   

                                                 
vii From Table 2-1, (US Census Bureau and HUD/U.S. 2008 p. 47) 
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Figure 1.4. U.S. Climate Zones Map. EIA uses five different climate zones as defined 

by the heating degree and cooling degree days. Source: (EIA 2002). 
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Figure 1.5. Average U.S. Household Energy Use by End-use and Climate Zone. The 

energy used for lighting & appliances and water heating remains fairly constant across 

climate zones, but space conditioning (i.e. space cooling and space heating) varies 

significantly among zones with cooler zones (i.e. coldest, cold and cool) consuming 

more energy for space conditioning than warmer zones (mild and hot) do. Calculated 

from RECS 2005 microdata. 
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Figure 1.6. U.S. Census Regions and Divisions. There are four census regions 

(distinguished by color), and the regions are divided into a total of nine census 

divisions (distinguished by spatial grouping). Source:  (EIA 2000). 
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Figure 1.7. Regional housing stock age composition. The Northeast and Midwest 

regions consist of a greater proportion of older homes than the West or South regions. 
Data source: Table 2-1 (US Census Bureau and HUD/U.S. 2008).  
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Figure 1.8. Delivered Energy for an Average Household by End-use and Census 
Region. Households in all regions use comparable quantities of energy for lighting & 

appliances and water heating, but the energy consumed for average household in the 

Northeast and Midwest uses more energy than the average household in the South and 

West, predominantly because of greater space heating use. Data source: Table 2.1.11, 

(D&R International, Ltd 2009 pp. 2-8). 
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1.3 RESEARCH PURPOSE  

With the recent surge of interest in weatherization and energy-efficiency, government at 

all levels is allocating substantially more funding for programs in these fields. It is 

advantageous to determine how this funding might be best applied. The purpose of this 

research project was to develop information that can contribute to this decision-making 

process by developing an approach that can be used to project the benefits and cost-

effectiveness of Wx programs in different urban areas.  

 Urban areas are likely to be where Wx programs will have the greatest impacts, as 

they frequently contain zones of concentrated unemployment, underemployment, and 

poverty. As such, these areas not only a large population of households eligible for Wx 

programs, but they are also likely to receive some of the greatest indirect benefits of the 

program such as job creation. Additionally, the high population density of urban areas 

allow for easier implementation of the DOE’s Retrofit Ramp Up program, which aims to 

fund programs that can reach entire neighborhoods (Chu 2009). Some states have enacted 

legislation for the purpose of promoting weatherization programs in urban areas, such as 

the Urban Weatherization Initiative Act in Illinois (Illinois General Assembly 2009). 

Given the DOE’s objectives, it seems likely other states will choose to focus 

weatherization assistance efforts in urban areas.  

 Towards fulfilling this purpose, our research objective research was twofold. Our 

first objective was to evaluate how readily available energy modeling software can: a.) 

accurately model low-income urban housing energy usage and b.) realistically project 

energy savings gained from retrofits. Our second objective was to develop a framework 

for determining where weatherization in urban areas would be most cost-effective. To 
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meet these objectives, we used the Home Energy Saver model driven with housing 

information from the American Housing Survey to project expected energy savings from 

weatherizing the low-income urban housing stock in widely different geographical 

regions. We compared the results of this approach to measured energy savings achieved 

in an urban Wx program. We then applied our approach to the analyses of the cost-

effectiveness of retrofitting low-income housing stock in cities from different Census 

regions and climate zones. 
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2 RESEARCH METHODS 

This chapter describes our project’s approach to modeling expected energy savings and 

reductions in carbon emissions from various weatherization retrofits. The approach 

consisted of extracting data from the American Housing Survey (AHS) to drive the Home 

Energy Saver (HES) model. HES calculated energy consumption for individual houses, 

energy savings achieved with specific weatherization treatments, and the installation 

costs of the weatherization treatments. With energy price and carbon intensity 

information published by the EIA and Environmental Protection Agency (EPA), 

respectively, we determined the cost-effectiveness of energy abatement and carbon 

abatement for each weatherization treatment. Figure 2.1 illustrates this process.  

 Each section within this chapter describes each component of the approach in 

more detail. The first section describes the energy modeling software used to project 

retrofit costs and resulting energy savings. The second section describes the data selected 

to drive the model and evaluate the validity of our modeling approach. The final section 

describes how we selected the urban areas to model and how we applied our model.  
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Figure 2.1. Approach Flow Chart for Calculating the Cost-effectiveness of Energy 
and Carbon Efficiency from Weatherization Treatments. 
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2.1 ENERGY AND RETROFIT MODELING 

This project used the Home Energy Saver (HES) software to model both expected energy 

consumption and savings gained from retrofitting treatments with publicly available 

technology. HES (http://hes.lbl.gov) is a freely available web-based residential energy 

audit tool developed and maintained by Lawrence Berkeley National Laboratory 

(LBNL). HES relies on user input, housing stock statistics, and the building simulation 

DOE-2 engine to approximate whole house energy consumption, potential energy savings 

with various retrofit treatments and the costs of such treatments. We selected HES over 

other models because it is readily available, comprehensive, and user-friendly. In an 

evaluation of three top house energy modeling softwares—SIMPLE, REM/Rate, and 

HES—HES required the fewest data inputs and the least time for data entry: to model a 

single house, HES required only 24 inputs and an average of 11 minutes for data entry, 

while the only other presently available software evaluatedviii, REM/Rate, required 100 

inputs and an average of 45 minutes for data entry (Earth Advantage Institute and 

Conservation Services Group 2009). We also judged HES an appropriate choice for this 

project choice given that past McKinsey & Co. analyses (Creyts et al. 2007; Granade et 

al. 2009) have used HES to estimate the energy consumption and possible savings from 

retrofit treatments in the residential sector. Because our project only considers energy 

consumed for space conditioning, we limit this discussion of HES to those parts related to 

space conditioning. 

                                                 
viii SIMPLE is still in development and not readily available (Blasnik 2009b).  
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2.1.1 Energy consumption and savings 

 HES calculates and reports end-use energy savings expected for the modeled 

house with prescribed retrofitting treatments. HES reports these savings both by end-use 

category (i.e. space heating, space cooling, water heating, appliances, lighting) and by 

fuel (i.e. gas, fuel oil, or electricity). Space conditioning energy consumption depends on 

a significant number of factors including, but not limited to: geographic location; house 

construction and foundation type; appliance use; the quality, quantity, and location of 

windows; building orientation; HVAC equipment type and efficiency; insulation levels in 

the floors, walls, and ceilings; air-tightness of the house envelope; and residents’ energy-

consumption behavior. The following discussion will describe how HES models the 

major components of space conditioning that weatherization assistance (Wx) programs 

frequently address: namely, building envelope insulation and air-tightness, HVAC 

equipment type and efficiency, and residents’ energy-consumption behavior.  

 Based on the HES documentation files (Mills 2008), each subsection below 

briefly describes how HES determines the effect of each major component and how it 

calculates expected values to the extent necessary for this project. In all cases, HES sends 

the relevant equipment and house envelope information to DOE-2 software (version 

2.1E) that performs the thermodynamic modeling required to determine hourly space 

conditioning energy consumption. DOE-2 (http://www.doe2.com) is a widely used and 

accepted building simulation program developed as a joint-project between James J. 

Hirsch & Associates and LBNL. The U.S. and other countries have developed building 

standards on the basis of DOE-2, and many design and consulting firms use DOE-2 as the 

main engine for energy modeling (Ellington 2010). Building information modeling 
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software, such as the popular Green Building Studio, use the DOE-2 engine to perform a 

whole building energy analysis (Autodesk 2010). 

Building envelope insulation and air-tightness 

 HES sends the building material and insulation information to DOE-2, which uses 

a table of typical material insulating properties to model the conductive losses through 

the building envelope. DOE-2 also models foundation heat transfer according to the 

methods developed by Huang et al (Huang et al. 1988) and updated by Winkelmann 

(1998) and Huang (Huang 2003)ix. These methods use effective foundation U-factors and 

typical soil insulating values to model conductive heat transfer between the foundation 

and the ground.  

 To determine building infiltration, HES uses the empirical equation for fractional 

leakage area that Sherman and Matson (1997) developed from analysis of LBNL’s 

national leakage database. The national leakage database contains normalized leakage 

(NL) values and some basic building descriptions for over 12,000 single-family houses 

nationwide (Sherman and Dickerhoff 1998). The empirical equation for fractional 

leakage derived from this database is 

0.3

/1000

8*0.3048*

2.5

NL
FLA

stories
=

 
 
 

 

where  
FLA = Fractional leakage area, the ratio of effective envelope leakage area to floor area 
NL = Normalized leakage (sq. ft total leakage area/sq. ft conditioned floor area) 
stories = 1 if single-story house, 2 if multi-story 
8 = assumed house ceiling height (feet) 
0.3048 = converstion factor for feet to meters 
(Sherman and Matson 1997) 
 

                                                 
ix Cited in (Warner 2005) 
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 If the user does not provide leakage information for a house, HES selects a 

normalized leakage value from the national leakage database based on house vintage 

(pre-1980s, 1980 or later), stories (1, more than 1), foundation type, presence of a ducted 

heating or cooling system and shell condition (whether or not there had been previous air 

sealing). For houses built after 1990, HES assumes an NL value of 0.5, a typical NL value 

in new construction. 

 HES passes fractional leakage area, house vintage, and number of stories to DOE-

2, which calculates infiltration according to the Sherman-Grimsrud Method (Sherman 

and Matson 1997). Because DOE-2 calculates hourly energy consumption, it can account 

for the change in infiltration resulting from open windows: DOE-2 simulates windows 

opening for natural ventilation whenever the outside temperature and humidity would 

result in a cooling effect outside of the heating season. 

HVAC equipment type and efficiency 

 HES passes HVAC equipment type (e.g. central gas furnace, oil boiler, electric 

baseboard heater) and efficiency ratings to DOE-2, which calculates hourly energy 

consumption. DO2-E uses unpublished LBNL performance data to determine equipment 

capacity curves and efficiency as a function of outdoor temperature. DOE-2 uses high 

resolution weather data to model hourly energy consumption necessary to maintain 

prescribed indoor temperatures. HES converts energy consumption into the relevant units 

of fuel according to standard conversion factors. If the user does not prescribe the 

efficiency of the heating system, HES assumes a default efficiency value based on typical 

efficiency of the heating equipment type. 
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Residents’ energy-consumption behavior 

 HES models the energy savings gained from replacing a standard thermostat with 

a programmable thermostat. Unless the user specifies otherwise, HES assumes that the 

switch from a standard to programmable thermostat changes the number of heating and 

cooling demand from 15 hours to 7 hours. DOE-2 uses this schedule to calculate hourly 

heating and cooling energy consumption.  
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2.2 DATA 

This section describes the data used to drive the Home Energy Saver and the observation 

data we used to evaluate the validity of our modeling approach. 

2.2.1 American Housing Survey 

 For this project, we used 2007 American Housing Survey (AHS) national 

microdata to drive the Home Energy Saver software (US Census Bureau and HUD/U.S. 

2008). The U.S. Census Bureau and the Department of Housing and Urban Development 

(HUD) has conducted the American Housing Survey every odd-numbered year since 

1981. The survey collects data from a fixed sample of roughly 55,000 houses selected in 

1985 using cluster sampling. In each iteration of the survey, the Census Bureaus adds to 

the sample some newly constructed houses and removes houses from the sample if they 

no longer exist. AHS reports not only house characteristics—such as house vintage, 

conditioned floor area, number of floors, and space conditioning equipment—but also 

household characteristics—such as household size and income.  

 While AHS has less energy-related data than the Energy Information 

Administration’s (EIA’s) Residential Energy Consumption Survey (RECS), AHS is more 

useful for this project because it contains more specific location information for each 

house in the sample. The only information RECS provides that could be used to 

determine houses’ location is census region, census division, and heating and cooling 

degree-days x. At best, this information allows the user to identify a climate contour along 

which the house exists within a census division. AHS, on the other hand, reports if a 

                                                 
x Heating and cooling degree days are quantitative indices that reflect the demand for space conditioning. A 
degree day is defined as the difference in temperature between outside and inside a building, assuming that 
the inside is a constant room temperature, typically 65 °F. These heating and cooling degree days are 
usually summed and reported for a heating and cooling season, respectively. 
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house is within a standard metropolitan statistical area (SMSA), defined by the Census 

Bureau as a metropolitan area of over 100,000 people. AHS also reports if the house 

exists in an urban or rural area within the SMSA. AHS uses the 1980 Census definition of 

an urban area as an incorporated place with a densely settled area (1000+ people per 

square mile) totaling at least 50,000 people. This resolution of AHS allows us to isolate 

low-income urban homes within a specific metropolitan area 

2.2.2 Philadelphia observation data 

 To evaluate the accuracy of our model, we compared modeled energy savings 

with observed energy savings resulting from retrofits of similar housing stock. Observed 

energy savings data came from an impact evaluation of Philadelphia Gas Works’ 

Conservation Works Program (CWP), a Wx program in Philadephia (M. Blasnik & 

Associates 2008). In this report, Michael Blasnik, of the energy performance consulting 

firm M. Blasnik & Associates, evaluated the effectiveness of two contractors within 

CWP, the non-profit Energy Coordinating Agency (ECA) of Philadelphia and the for-

profit Honeywell. Using the same methods as PRISM, Blasnik analyzed pre- and post- 

treatment energy bills to calculate weather-normalized energy consumption in houses that 

received treatment to determine gross energy savings. To account for any non-program 

related trends in energy consumption, Blasnik also examined energy bills from a 

comparison group—a group of houses similar to those treated, but that did not receive 

treatment. Blasnik calculated the net energy savings as the gross savings within the 

treatment group minus the average change in consumption within the non-treatment 

comparison group. 
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 Of the two contractors Blasnik evaluated, we chose to compare our modeling 

estimates with the data from Honeywell’s for two reasons. The first reason is that ECA 

targeted high energy users and Honeywell did not. Many evaluations show that retrofits 

in high-user houses are substantially more cost-effective than average-use houses 

(Blasnik 2009a). This relationship certainly has meaningful implications for designing 

weatherization strategies, but it is problematic for this project—which aims to quantify 

average energy savings from retrofitting low-income houses—since by definition high 

users are not representative of this population. We also selected to emulate Honeywell’s 

result because HES can model each of its main retrofitting treatments—programmable 

thermostat, roof insulation and blower-door guided air sealing—whereas ECA did not use 

air sealing and installed under-porch partitions, which HES could not model. Due to HES 

limitations, however, we could not model roof insulation retrofits, so we instead chose to 

model roof insulation as attic insulation. With three different treatment elements, there 

are seven different treatment scenarios of a single treatment or combination of multiple 

treatments. Figure 2.2 shows Blasnik’s calculated energy savings for each treatment 

scenario in the Honeywell population. Table 2.1 lists each treatment scenario’s symbol 

abbreviation used throughout this report, along with the number of houses that received 

that treatment according to Blasnik’s evaluation. These savings, as a percentage of pre-

retrofit space conditioning energy consumption, are roughly consistent with those 

reported for ECA and in impact evaluations of other Wx programs in colder (i.e. coldest, 

cold, and cool) climate zones (APPRISE 2006; Blasnik 2009a; Khawaja et al. 2006; M. 

Blasnik & Associates 2004, 2007, 2009). 
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 The error bars seen in Figure 2.2 (indicating a 90% confidence interval) suggest 

the wide variability of energy savings for each treatment scenario. While there is almost 

certainly some error associated with the energy savings calculation process, these error 

bars demonstrate that treatment effectiveness can vary from house-to-house. Such 

variation occurs because the sample—the Philadelphia housing stock—is heterogeneous. 

Houses can vary by many physical factors including shape, size, materials, construction 

type and many other factors. Over their lifetimes, the physical characteristics of houses 

will change depending on local weather conditions and resident wear-and-tear. And 

beyond the physical characteristics of the house, there is a behavioral component to 

energy usage that will cause energy consumption to vary from person-to-person, and as 

discussed in Subsection 1.2.2, take-back may skew the measure of energy savings.  
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Table 2.1. Treatment Scenarios, Corresponding Symbols, and Number of Houses 
Receiving that Treatment. Data source: (M. Blasnik & Associates 2008). 

Treatment scenario Symbol Number of units 

Thermostat only T 205 

Roof/attic insulation only A 14 

Air sealing only S 155 

Air sealing and thermostat S & T 345 

Roof/attic insulation and thermostat A & T 38 

Roof/attic insulation and air sealing A & S 95 

Attic insulation, air sealing and thermostat A & S & T 279 
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Figure 2.2. Net Natural Gas Savings Observed for Different Treatment Scenarios. 
Savings are relative to pre-retrofit consumption. Error bars represent a 90% 

confidence interval. Data source: (M. Blasnik & Associates 2008). 
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2.3 ANALYSIS SUMMARY 

The following section describes in more detail some of the specifics of our modeling 

choices and applications.  

2.3.1 Analysis methods 

 For this project, we restricted our analysis to occupied, low-income, one-unit 

buildings within the urban areas of an SMSA. One-unit buildings include both attached 

and detached housing units, but exclude mobile homes and buildings with more than one 

unit such as apartments or multi-family houses. In this analysis, a household income of 

150% of the federal poverty line classified a household as low-income. The federal 

government uses this income level to determine eligibility for many assistance programs, 

including LIHEAP, a federal heating and cooling assistance program.  

 Because our reference data—Blasnik’s Honeywell evaluation—contains 

combinations of only three treatments, we will only consider treatments that are 

combinations of programmable thermostats, air sealing and attic insulation. Specifically, 

we modeled that air-sealing would reduce infiltration 25% and installing attic insulation 

would increase attic insulation from R-0 to R-38 xi. For treatment scenarios that did not 

include attic insulation, we assumed the HES default for attic insulation, R-11. The 25% 

infiltration reduction is consistent with average reductions measured by ECA and some 

specific contractors in Pennsylvania Wx programs, but this reduction estimate is 

conservative compared to the 40% reductions delivered by contractors in other Wx 

                                                 
xi R-values are measures of thermal resistance, defined as the temperature difference across an insulator 
divided by the heat flux through it. Bigger R-values indicate more effective insulation. Typical residential 
insulation levels range from R-values of 0 (no insulation) to 60, with 38 as a typical moderately efficient 
level (Mills 2008). 
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programs in Pennsylvania (M. Blasnik & Associates 2007) or the roughly 27-39% 

infiltration reduction found in Ohio Wx programs (Khawaja et al. 2006). 

  For this project, we used AHS to provide input to HES for house vintage; 

conditioned floor area; number of floors; if a house were attached or detached; 

foundation type; heating equipment fuel and type; air conditioning type; and number of 

residents in the house. Based on these inputs, HES determined typical values for the 

remaining variables based on expected parameters for single family detached houses 

described in RECS.  

 To determine the average energy consumption and energy savings for a housing 

stock, we calculated the expected value of energy consumption and energy savings for 

each treatment among the houses modeled in a city. In calculating these expected values, 

we weighted the results of each model run according to the weights provided in AHS, 

which indicates how many houses in the population each house in the sample represents. 

We used average energy consumption and average energy savings to describe the results 

of our analysis. Many of this report’s plots feature error bars indicating 90% confidence 

intervals. Blasnik’s analysis included calculating these error bars assuming a Student’s t-

distribution. For the modeled energy savings, we also assumed that the average energy 

savings followed the Student’s t-distribution, and we calculated 90% confidence intervals 

accordingly with sample size equal to the number of houses modeled.  

2.3.2 City selection 

 As discussed in Subsection 1.2.3, energy consumption data demonstrate that 

consumption varies with Census region and climate zone because of housing stock trends 

and different weather-driven space conditioning demands. In order to investigate how 
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potential energy savings varied among geographical and climatic regions, we selected 

cities to analyze based on census region, climate zone, and data availability.  

 With the goal of selecting cities representative of their region’s housing stock, we 

analyzed AHS data to compare the vintage of each SMSA’s urban housing stock to the 

vintage of regional urban housing stock. We selected vintage to describe housing stock 

because factors important to space conditioning (e.g. insulation levels, air-tightness) 

depend on the building technology available and building practices followed when the 

house was built: new houses are generally tighter and better insulated than older houses 

because of improvements in building materials and practices. Regression analysis of a 

national residential leakage database identified age as one the most significant building 

characteristic relevant to its leakage, with leakage increasing 1% per year since a house 

was built (McWilliams and Jung 2006). 

 To measure regional representativeness, we formed a cumulative distribution 

function (CDF) for vintage in each city and compared it to the regional urban housing 

stock CDF. We calculated representativeness as the sum of absolute deviation from the 

regional CDF, where most representative cities were those with the lowest sum. Figure 

2.3 through Figure 2.6 show how the housing stocks of a sampling of cities compare to 

the regional urban housing stock.  

 To the extent possible, we selected cities to model based on this measure of 

representativeness. In all cases, however, the most representative cities yielded a very 

small sample size of low-income household. In the South census region, for instance, the 

urban housing stock in the Fort Worth-Arlington, TX metropolitan area was most 

representative of the region’s urban housing stock, but the query for low-income houses 
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in Fort Worth-Arlington identified only one house. Mindful of both sample size and 

regional representativeness, for modeling purposes we selected the low-income housing 

stock in Orlando, FL; Los Angeles-Long Beach, CA; Seattle, WA; Philadelphia, PA; 

Detroit, MI; and Milwaukee, MI. Figure 2.7 shows the CDF for vintage in each of these 

selected metropolitan areas. 

 Table 2.2 summarizes the major building characteristics of the low-income urban 

housing stock for each of the cities we modeled. Among the major differences within 

building characteristics are foundation type, vintage, space conditioning equipment and 

number of floors. 

 Basements dominate the foundation type in northern cities, while cities in the 

south are predominantly built on concrete slabs. Foundation type may be relevant as 

houses with crawlspaces or unconditioned basements are statistically on average 8% 

leakier than comparable houses with conditioned basements or concrete slab foundations 

(McWilliams and Jung 2006). 

 The summary of house vintages indicates that Orlando and Los Angeles-Long 

Beach have newer housing stock than the other cities, suggesting that these houses may 

initially be better insulated and more tightly sealed. 

 The Orlando housing stock relies entirely on electric heating, but most houses in 

the other cities use natural gas. As discussed in the next subsection, this has implications 

for both the cost and carbon intensity of space conditioning in these areas. Additionally, 

different HVAC equipment types typically have different efficiencies. In general, electric 

furnaces are more efficient by end-use than natural gas furnaces, but they tend to have 
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much larger carbon footprints as electricity is typically more carbon intensive than 

natural gas or fuel oil. 

 Orlando is also the only city with universal air conditioning. Air conditioning 

ownership in other cities varies tremendously and somewhat surprisingly: Milwaukee, the 

coldest of the cities we examined, has the second highest ownership rate of air 

conditioners after Orlando. Although natural gas-powered air conditioning units exists, 

all air conditioning units in the modeled sample contain either an electric room air 

conditioner or electric central air conditioning system. The combination of climate and 

air conditioning ownership will cause the contribution of space cooling to total space 

energy consumption to vary significantly across the cities we model. 

 For this project’s purposes, the number of floors was relevant for multiple 

reasons. Statistically, leakage is 16% greater in multi-story houses compared to single-

story houses of comparable floor area (McWilliams and Jung 2006). The number of 

floors was also important in conjunction with average floor area to determine the Floor 

Area Ratio (FAR). The FAR is defined as the ratio of a building’s total floor area to the 

building’s footprint. Table 2.2 shows that, with the exception of Milwaukee housing, the 

low-income housing stock floor area does not vary much between cities—only from 1514 

ft2 to 1699 ft2. But because the number of floors—or stories—vary, the FAR must also 

vary: houses with fewer floors but the same floor area must have a lower FAR, and 

therefore more floor area per story. The FAR was relevant to this thesis because of the 

implications on attic size. Houses in Orlando, where most housing is single-story, will on 

average have larger attics than houses in Detroit, where most low-income houses have 

three floors. The likely implications are that homes in Orlando would lose a greater 
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percentage of their space conditioning through uninsulated attics than houses in Detroit 

would, and it would likely cost more to insulate attic in Orlando than Detroit because 

larger attics require more insulation material and labor.  

 

Table 2.2. Building Characteristic Summary of Low-Income Housing Stock by 
SMSA.  

Parameter Orlando 
Los Angeles-
Long Beach Seattle Philadelphia  Detroit Milwaukee 

Census region South West West Northeast Midwest Midwest 

Region representativeness rank 6 of 48 27 of 30 23 of 30 11 of 33 8 of 34 17 of 34 

Climate zone Hot Mild Cool Cool Cold Coldest 

HDD65 (1971-2000 average) 580 1274 4615 4759 6422 7087 

CDD65 (1971-2000 average) 3428 679 192 1235 736 616 

Sample size 4 14 4 11 13 8 

Number of households 9225 41597 13798 37398 41789 24651 

Average floor area (ft2) 1657 1688 1669 1562 1514 1945 

Attached 0% 17% 0% 57% 0% 0% 
House type 

Detached 100% 83% 100% 43% 100% 100% 

Basement 0% 0% 81% 92% 93% 100% 

Crawlspace 0% 35% 0% 8% 7% 0% 
Foundation 
type 

Concrete slab 100% 65% 19% 0% 0% 0% 

1 74% 69% 0% 0% 0% 0% 

2 26% 24% 100% 36% 15% 37% 

3 0% 0% 0% 64% 85% 63% 

Number of 
floors 

4 0% 7% 0% 0% 0% 0% 

< 1920 0% 0% 0% 35% 15% 42% 

1920-1939 0% 0% 57% 14% 40% 0% 

1940-1959 26% 50% 24% 30% 41% 45% 

1960-1979 74% 27% 19% 21% 0% 13% 

Vintage 

>= 1980 0% 23% 0% 0% 4% 0% 

Central gas furnace 0% 37% 81% 42% 74% 72% 

Room gas furnace 0% 43% 0% 10% 8% 0% 

Gas burner 0% 0% 0% 19% 18% 28% 

Oil burner 0% 0% 0% 29% 0% 0% 

Electric furnace 100% 13% 19% 0% 0% 0% 

Heating 
equipment 

Electric baseboard heater 0% 8% 0% 0% 0% 0% 

Room A/C 0% 0% 24% 34% 36% 28% 

Central A/C 100% 44% 0% 35% 11% 59% 
Air 
conditioning 

No A/C 0% 56% 76% 31% 54% 13% 
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Figure 2.3. Cumulative Distribution Function for Urban Housing Stock Vintage in 
the Northeast. 
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Figure 2.4. Cumulative Distribution Function for Urban Housing Stock Vintage in 
the Midwest. 
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Figure 2.5. Cumulative Distribution Function for Urban Housing Stock Vintage in 
the South. 
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Figure 2.6. Cumulative Distribution Function for Urban Housing Stock Vintage in 
the West. 
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Figure 2.7. Cumulative Distribution Function for Urban Housing Stock Vintage of 
the Selected Metropolitan Areas. 
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2.3.3 Value of energy savings  

 To quantify the value of the energy saved by retrofitting treatments, we found 

information that allows us to convert from energy savings to both monetary savings and 

carbon savings. 

 The direct monetary value of energy savings is the avoided cost of energy 

consumption, and is therefore equal to the energy saved multiplied by the energy price. 

HES’s default energy prices are the EIA’s reported average statewide energy prices from 

2004 for natural gas and electricity and from 2000 for fuel oil (Mills 2008). Figure 2.8 

shows how energy prices for each fuel vary across the states that encompass the cities we 

selected to model. We decided to use these energy prices rather than more recent prices 

because the global economic downturn has caused energy prices to be 

uncharacteristically low. In contrast, as seen in Figure 1.1 (pg. 6), national average 

energy prices from 2004 for natural gas and electricity are representative of EIA-

projected energy prices in the coming years. If the price of fuel oil closely follows the 

price of crude oil, however, these EIA projections indicate that fuel oil prices from 2000 

are much below prices likely in the near future. 

 The effectiveness of a retrofitting treatment to reduce carbon emissions depends 

on the carbon intensity of the energy saved. In conventional space conditioning systems, 

there are three primary energy sources: natural gas, fuel oil, and electricity. Carbon 

intensity is a chemical property of the fuel used and the physical process used to convert 

the fuel into energy. In the cases of natural gas and fuel oil, carbon intensity is a chemical 

property that will vary slightly depending on the quality of the fuel, but it is generally 

constant. The carbon intensity of electricity, however, varies significantly depending on 
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the process that produced it. Wind, solar, and hydropower are all electricity-generating 

processes with negligible carbon emissions, but coal-fired power plants generally create 

electricity in a very carbon intensive way, in part because coal has the highest carbon 

content of any fossil fuel, and in part because coal-fired power plants are frequently not 

very efficient: the national average thermal efficiency of coal-fired power plants in 1999 

was 33.5% (US DOE and EPA 2000) compared to efficiencies of roughly 40% and 60% 

for simple and combined cycle gas turbines, respectively (Unger and Herzog 1998). The 

power generation equipment available in each state depends on many factors, including 

fuel availability and state policy and regulations, and therefore the carbon intensity of 

electricity can vary significantly among states. Figure 2.9 illustrates the energy 

consumption mix for several states, including those states to which the cities analyzed 

here belong. West Virginia and New Jersey appear in the figures for points of reference. 

Figure 2.10 shows how each state’s energy mix translates into carbon emissions per 

MMBTU of electricity.  

2.3.4 Retrofit costs 

 In addition to estimating the energy saved from a treatment scenario, HES also 

estimates the cost of treatment, taking into account not only the cost of purchasing 

treatment materials but also the cost of installation. HES takes its cost estimates from the 

California Public Utilities Commission’s Database of Energy Efficient Resources 

(DEER) (Horman 2010). DEER provides estimates of energy savings, treatment costs, 

and effective useful life for a large variety of residential energy-efficient technologies and 

measures. HES does not vary costs by location, an assumption justified by a 1990 

evaluation of WAP programs that reported installation costs do not vary much between 
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climate regions (Brown and Berry 1993). Of the three treatments examined—

programmable thermostat, blower-door guided air-sealing and attic insulation—HES 

estimates that attic insulation is the only treatment with a cost that varies by house. Attic 

insulation depends on size of the attic. Installing insulation in larger attics is not only 

more expensive because it requires more insulation materials, but also because of the 

greater labor requirement. Unfortunately, there are not many evaluations of Wx 

programs, and of those that exist, few of them list the cost of each measure. To evaluate 

the validity of these cost estimates, we examined several other Wx impact evaluations 

that show the DEER estimated costs are relatively representative of reality. Table 2.3 

summarizes these findings, showing that HES’s cost estimates for programmable 

thermostats and blower-door guided air sealing are conservative compared to observed 

costs. Observed costs also show a wide range of attic insulation costs, roughly consistent 

with HES estimates. 
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Figure 2.8. Energy Costs for Selected States. Data source: (Mills 2008). 
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Figure 2.9. Electricity Consumption by Fuel for Selected States. Data source: (EPA 
2010). 
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Figure 2.10. Carbon Intensity of Retail Electricity for Selected States, Fuel Oil, and 
Natural Gas. Data source: (EIA 2009c; EPA 2010). 

 
 

Table 2.3. Summary of retrofitting costs reported for different Wx programs.           
* indicates that cost is for roof insulation 

 

 

Location Thermostat 
Attic 
insulation 

Blower-door 
guided air sealing Study 

38-48 209-288 153 (M. Blasnik & Associates 2008) 

n/a 882 288 (APPRISE 2006) Pennsylvania 

0 1659 228 (M. Blasnik & Associates 2007) 

Ohio n/a 610-980 209 (Khawaja et al. 2006) 

n/a 300 n/a (M. Blasnik & Associates 2009) 
Colorado 

n/a 300 n/a (M. Blasnik & Associates 2006) 

New Jersey 57 583 286 (M. Blasnik & Associates 2004) 

Mean across 
programs 36 657 247   

HES estimate 70 172-1547 400   
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3 RESULTS AND DISCUSSION 

This chapter presents and discusses our project’s main results. The first section evaluates 

how accurately our model emulates average energy savings possible through retrofitting 

low-income houses. The second section presents and contrasts the our model estimates of 

the cost-effectiveness of three common retrofitting treatments in the low income housing 

stock of six different metropolitan areas spanning each census region and climate zone.  
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3.1 MODEL EVALUATION 

As discussed in Chapter 2, our proposed model consisted of driving the Home Energy 

Saver with American Housing Survey data in order to predict energy savings for low-

income housing stock. To test the accuracy of this approach, we compared modeled 

energy savings with actual energy savings measured by the Philadelphia Gas Works’ 

Conservation Works Program (CWP), a weatherization assistance program for low-

income households in Philadelphia, PA (M. Blasnik & Associates 2008). Specifically, we 

analyzed the energy savings achieved by the CWP contractor Honeywell, and used our 

model to emulate their achieved results. Emulating Honeywell’s results included first 

analyzing how accurately our model estimated pre-retrofit energy consumption and 

secondly analyzing how accurately our model estimated the effectiveness of different 

retrofitting treatments. 

3.1.1 Pre-weatherization energy consumption 

 We first examined how well our model simulated pre-retrofit energy consumption 

for space conditioning. The information available in the CWP evaluation limited this 

analysis in two respects. First, the CWP evaluation includes information on natural gas 

pre- and post- weatherization consumption, which provides us information about space 

heating energy, but the evaluation does not include information about the pre- or post- 

weatherization electricity consumption, so we have no information about the space 

cooling energy demand or how it changes after weatherization. The CWP evaluation use 

energy bills to determine natural gas consumption, but because energy bills do not 

itemize consumption by end-use, we could not precisely isolate natural gas consumption 

for the space heating end-use. Because we could not compare observed to modeled space 
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heating energy consumption, we instead chose to compare observed to modeled total 

natural gas consumption. HES provides individual energy end-use estimates for the two 

major natural gas end-uses—space heating and water heating—and we calculated the 

total natural gas consumption as the sum of the these two end-uses. Figure 3.1 shows that 

our approach models the average natural gas consumption reasonably well: the mean 

observed natural gas consumption was 126.4 ± 1.5 MMBTU, and the mean modeled 

natural gas consumption was 132.6 ± 24.3 MMBTU. This modeled consumption is 

certainly within range of the observed mean. In previous years’ evaluations, the average 

household pre-weatherization natural gas consumption ranged from 122.0 MMBTU to 

187.3 MMBTU (M. Blasnik & Associates 2008 p. 4).  

3.1.2 Energy savings 

 We considered natural gas consumption to be a good proxy for space heating 

energy consumption, so establishing that the model accurately emulates natural gas 

consumption suggests HES accurately describes thermal exchanges and heating loads 

when driven with AHS data. After validating the model’s ability to emulate energy 

consumption, we analyzed how well the model emulated post-retrofit energy savings. 

Figure 3.2 shows how average retrofit effectiveness compares between observed and 

modeled results. The CWP evaluation indicates that gas savings range from a minimum 

of 5% for air sealing and programmable thermostat installation to a maximum of 13% for 

all of the treatments—programmable thermostats, attic insulation and air sealing. 

Compared to the observed savings, the model fairly accurately predicted savings when 

the only treatment was a programmable thermostat (5.4% observed vs. 4.5% modeled) or 

attic insulation (12.0% observed vs. 10.7% modeled). For each of the other treatment 
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scenarios, the modeled energy savings were much more inaccurate (e.g. 6.0% observed 

vs. 13.3% modeled for the combination of air sealing and thermostat). As discussed in 

Subsection 1.2.2, discrepancies between observed and modeled energy savings fall under 

the category of shortfall and take-back. Take-back, a behavioral change towards 

consuming more energy, is possible in all scenarios, and addressing it is beyond the scope 

of our research. We did, however, identify two likely sources of technical estimation, or 

shortfall. These sources were inaccurate leakage modeling and unrealistic modeling of 

combined effects of multiple treatments.   

 Perhaps the most obvious error apparent from Figure 3.2 is that the model 

significantly overestimates energy savings for treatments scenarios that include air 

sealing. As discussed in Subsection 2.3.1, the modeled 25% leakage reduction expected 

from air sealing is comparable to leakage reductions observed from air sealing in other 

retrofitting programs in Pennsylvania. If we are willing to accept that the 25% leakage 

reduction represents the actual leakage reductions Honeywell achieved, then the model 

overestimated either pre-retrofit leakage, energy losses due to leakage, or both. It is also 

possible that improper air sealing resulted in the lower than expected energy savings. An 

impact evaluation of the Ohio Weatherization Assistance Program identified improper or 

inadequate air sealing as the most frequent source of lower-than-expected energy savings 

(Khawaja et al. 2006 p. 53). This evaluation found that inadequate air sealing typically 

around the chimney, plumbing bypasses, wall tops, windows and kneewall bottoms 

resulted in 30% less reduction in leakage than expected. 

 The second error Figure 3.2 suggests is that the model does not accurately 

estimate savings for combination treatment scenarios—that is, scenarios that consist of 
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more than one treatment. The interaction between different treatments is complicated, 

especially those treatments which address different types of energy losses, such as air 

sealing—which addresses convective losses—and insulation, which reduces 

predominantly conductive losses. Indeed, these complicated relationships are significant 

contributors to the difficulty of accurate building energy modeling, and our results lead us 

to believe our approach insufficiently models them. 

 While modeling these complicated relationships is certainly a source of 

uncertainty, the largest discrepancies between observed and modeled energy savings 

arose when the treatment scenarios included air sealing. The only treatment scenario not 

to include air sealing—the scenario with attic insulation and thermostats installed—

features a discrepancy that is relatively small (11.2% observed vs. 14.8% modeled) 

compared to the other combination treatment scenarios (e.g. 10.1% observed vs. 18.6% 

modeled for the combination of attic insulation and air sealing). This relationship may 

suggest that while the model may not accurately calculate the interaction between 

individual treatments, this shortcoming may be exaggerated in Figure 3.2, in which more 

than half of the treatment scenarios include air sealing, which, as we discussed above, 

was a treatment vastly overestimated. 
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Figure 3.1. Average Observed and Modeled Pre-retrofit Natural Gas Use for Low-
income Homes in Philadelphia. The values inside each column indicate column height 

Error bars indicate a 90% confidence interval. 
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Figure 3.2. Observed and Modeled Energy Savings for Low-income Housing in 
Philadelphia. Savings are relative to pre-retrofit gas usage. The values inside each 

column indicate column height. Error bars indicate a 90% confidence interval. 
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3.2 CITY ANALYSIS 

This section presents and discusses the results of our modeling analysis of low-income 

housing stock in Milwaukee, Detroit, Philadelphia, Seattle, Los Angeles-Long Beach and 

Orlando. 

3.2.1 Pre-weatherization energy consumption 

 As discussed in Subsection 2.3.2, for the purposes of analyzing the cost-

effectiveness of retrofit treatments varied for different regions, we modeled the energy 

use and energy savings for low-income urban housing stock in six different metropolitan 

areas: Milwaukee, Detroit, Philadelphia, Seattle, Los-Angeles-Long Beach, and Orlando. 

Figure 3.3 shows the modeled average household space conditioning energy consumption 

for each of the six cities we examined. Figure 3.3 also displays the heating and cooling 

degree days, from which we can see that that energy consumption is generally driven by 

heating demand, measured by heating degree day (HDD). This trend confirms our 

expectations that the housing stock in colder climates consumes more energy than the 

housing stock in warmer climates. Among the cities we analyzed, Orlando is the only city 

that does not follow this trend. Despite the fact that Orlando has the fewest HDDs of any 

of the cities we modeled, average energy consumption for space conditioning is higher in 

Orlando than in Los Angeles, a city with more than twice as many HDDs than Orlando. 

This anomaly exists because of the difference between the two cities’ space cooling 

loads. Orlando has five times as many cooling degree days as Los Angeles, and space 

cooling constitutes roughly half its space conditioning loads (Figure 3.4), meaning the 

difference in cooling demands greatly exceeds the difference in the two cities’ heating 

demand. Additionally though less significantly, while all of the Orlando sample has air 
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conditioning, only 44% of the Los Angeles sample had any air conditioning, making 

space cooling’s contribution to Los Angeles’ energy consumption even smaller than it 

would be if 100% of the housing stock had air conditioning. 

 Using the energy conversion methods described in Subsection 2.3.3, we 

calculated the average carbon emissions associated with space conditioning. Figure 3.5 

shows the relationship between energy consumption and carbon emissions for the six 

cities we modeled. As expected, we see a general trend of carbon increasing with energy 

consumption. Orlando, however, is again the exception. Orlando’s carbon footprint is 

disproportionately large relative to its energy consumption because the energy mix for 

space conditioning is entirely electricity, while in every other city we examined, natural 

gas was the predominant fuel and source of the majority of space conditioning-related 

carbon emissions (Figure 3.6). This difference in fuel source is significant as Florida’s 

electricity is among the most carbon-intensive we examined and is more than three times 

as carbon-intensive as natural gas (Figure 2.9). 
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Figure 3.3. Average Space Conditioning End-use Energy Consumption in Low-
income Houses for Selected Cities with Heating and Cooling Degree Days (HDD and 
CDD, respectively). Error bars represent a 90% confidence interval. 
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Figure 3.4. Energy Mix for Space Conditioning in Low-income Houses by City. 
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Figure 3.5. Average Annual End-use Energy Consumption and Carbon Emissions 
for Space Conditioning in Low-income Houses for Selected Cities. Error bars 

represent a 90% confidence interval. 
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Figure 3.6. Carbon Dioxide Emissions Associated with Energy Mix for Space 
Conditioning in Low-income Houses by City. 
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3.2.2 Energy savings 

 After examining what the model describes as the current status of space 

conditioning in these cities, we then analyzed the projected cost-effectiveness of the six 

treatment scenarios. Figure 3.7 through Figure 3.17 xii illustrate the results of our cost-

effectiveness analysis, described here in a step-by-step process. Figure 3.7 displays the 

average annual energy savings for a low-income house in each of the cities and for each 

of the treatment scenarios we considered. This figure shows that, generally, energy 

savings from retrofitting treatments increase with colder climates. As observed and 

discussed earlier, houses in cities in colder climates generally consume more energy for 

space conditioning than cities in warmer climates, so we would expect that there is a 

greater potential for energy savings in houses that initially consume more energy for 

space conditioning. Somewhat unexpectedly, this figure shows that inter-city savings do 

not remain constant or proportional for different treatment scenarios. For example, attic 

insulation saves the average Milwaukee house about twice as much energy as it saves the 

average Orlando house, but air sealing saves the average Milwaukee house about ten 

times as much energy as the average Orlando house. Such a variation may be unrealistic 

and attributable to a modeling error, but our model validation in Section 3.1 suggests the 

model is capable of estimating energy consumption and savings within reasonable 

accuracy. The modeled geographic differences in energy consumption are instead likely 

due to differences in climate, housing stock, and space conditioning equipment. These 

results, therefore, are an indication that our approach could be useful for determining how 

the effectiveness of treatments vary geographically.  

                                                 
xii  Refer to Table 2.1 on page 33 for a key describing of the treatment scenario symbols 
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In determining the cost-effectiveness of energy-saving projects, it is essential to 

consider the value of the avoided energy consumption—that is, the value of energy 

savings. As mentioned in Chapter 1, there are many benefits of energy conservation 

unrelated to energy cost savings, such as job creation, reduced air pollution, and reduced 

dependence on foreign energy sources. Many studies have researched and quantified 

these indirect benefits, but these estimates vary widely from study-to-study, so our 

analysis is based only on the direct, energy cost-related benefits. The value of the energy 

savings, therefore, is equal to the energy savings multiplied by energy cost.  Figure 3.8 

shows the value of the annual energy savings resulting from each treatment scenario. As 

described in Subsection 2.3.3, energy prices vary by location; for our analysis, we 

assumed each city’s energy costs were equal to its average state energy prices xiii. 

After quantifying the benefits, the next step in calculating cost-effectiveness is to 

consider costs. Figure 3.9 shows how the cost of each treatment scenario varies for 

different cities. As described in Subsection 2.3.4, HES assumes a constant cost for 

thermostat installation and air-sealing, but the cost of attic insulation varies. The cost of 

attic installation is a function of material and labor costs, which in turn is a function of 

attic size. According to calculations based on HES estimates, average attic insulation 

installation costs are roughly equal in Philadelphia, Detroit and Milwaukee, but are 

significantly higher in Orlando, Los Angeles-Long Beach and Seattle. These variations in 

attic cost are because the housing stock in these cities has larger attics than do 

Philadelphia, Detroit, and Milwaukee and therefore require not only more insulating 

material but also more labor to install it. 

                                                 
xiii Refer to Figure 1.6 on page 18 to see how these prices vary for each state 
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Once the costs and benefits have been quantified, there are several different 

methods to weigh their values. One basic method is to calculate the simple payback 

period, which is the time required for the benefits of a project to equal or fully 

compensate for the costs without accounting for the time value of money. We calculated 

simple payback period as the cost of treatment scenario divided by the annual energy 

savings resulting from the treatment scenario. Figure 3.10 illustrates the simple payback 

period for each treatment scenario. It is, effectively, Figure 3.9 divided by Figure 3.8. The 

simple payback period is an indication of how profitable each treatment is in each city. 

While air sealing in Los Angeles-Long Beach has a ten year payback period, the same 

treatment has a three year payback period in Milwaukee. This means that over the ten 

year period it takes to recover the attic insulation investment in Los Angeles-Long Beach, 

we could say that the attic insulation in Milwaukee paid for itself roughly three times. 

From Figure 3.10, we can discern that for all treatment scenarios except for thermostat 

installation, Los Angeles-Long Beach has the longest payback of any city. By 

reexamining Figure 3.8 and Figure 3.9, we can see that these long payback periods result 

from comparatively low energy cost savings and comparatively high treatment costs. 

The simple payback period is useful measure of profitability when the project 

consists of one upfront cost and then constant benefits over time, but it is limited by an 

inability to account for a varying series of future cash flows. For example, A more 

refined and realistic approach for determining a project’s feasibility is to calculate its Net 

Present Value (NPV), which allows us incorporate future cash flows and discount those 

flows to account for time preferences and opportunity costs. Figure 3.11 shows the seven 

year Net Present Value (NPV) of different treatment scenarios. The NPV is calculated by 
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summing all discounted cash flows within the prescribed payback period . Here, we 

selected a period of seven years, a typical payback period in the building industry. The 

NPV can be interpreted as the real financial value of a project, where a positive NPV 

indicates that a project is profitable and a negative NPV indicates that a project loses 

money. In our analysis, we discounted future money flows by 7%, the rate the federal 

government suggests applying to public projects because it approximates average private 

sector rate of returns (Office of Management and Budget 1992). Based on EIA 

projections, we also assumed that the price of electricity and natural gas would 

approximately remain constant relative to the 2004 costs we used in our analysis (EIA 

2009e). 

Figure 3.11 shows that except for Orlando and Los Angeles-Long Beach, every 

treatment scenario is profitable in each of the cities we modeled. For the Orlando housing 

stock, only air sealing is NPV-negative, but for the Los Angeles-Long Beach housing 

stock, attic insulation, air sealing, the combination of the two, and the combination of all 

three treatments are NPV-negative. The negative NPV for these scenarios indicates that 

the treatment options do not save enough energy to earn back the money invested in the 

treatment scenario. From Figure 3.11, we can see that installing thermostats is the only 

treatment that is NPV-positive for every city, and all of the other treatment scenarios are 

particularly profitable for Philadelphia and Milwaukee due to significant energy savings 

and relatively high energy prices. 

 The NPV as calculated above is useful for estimating a project’s financial 

feasibility assuming that there are no other costs associated with energy consumption, 

such as an energy tax. To account for an energy tax, such as the so-called BTU tax 



 

 62 

President Clinton proposed in 1993 (Greenhouse 1993), it is more appropriate to consider 

the NPV per unit energy saved over the project’s lifetime. Any project that costs less than 

the tax rate per unit energy saved is profitable, while any project that costs more than the 

tax rate loses money. Figure 3.12 is an energy abatement cost graph, modeled after 

McKinsey & Co.’s greenhouse gas abatement curves that show the cost of abating 

greenhouse gases associated with different activities. Figure 3.12 shows the NPV of 

projected energy savings divided by the total energy saved over the payback period. We 

selected a 15 year payback period based on the expected lifetime of the thermostat, the 

shortest-lived of the treatments we considered (M. Blasnik & Associates 2008). Although 

we did discount energy cost savings to account for time preferences and opportunity 

costs, we did not discount future energy savings. Applying no discount to future energy 

savings means that the value of energy saved in the future is the same as the value energy 

saved in the present. This principle is not only logical, as there is no convincing reason to 

discount future energy savings, but it is also common practice: McKinsey & Co. used in 

their analyses. Figure 3.12 illustrates that most measures, except for air sealing and the 

combination of attic insulation and air sealing in Los Angeles-Long Beach actually saves 

money per MMBTU abated, meaning that each of them is a profitable energy-saving 

measure. Despite Orlando being among the lowest savers of end-use energy, because 

Orlando uses electricity for space conditioning, whereas each of the other cities uses 

mostly comparatively inexpensive natural gas, the high cost of electricity makes 

weatherization in Orlando among the most profitable modeled. Oppositely, 

weatherization in Detroit, where there is high energy savings potential but low energy 

prices, is among the less profitable modeled. 
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Figure 3.7. Average Annual Low-income Household End-use Energy Savings by 
City and Treatment Scenario. Error bars represent a 90% confidence interval. 
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Figure 3.8. Average Low-income Household Annual End-use Energy Cost Savings 
by City and Treatment Scenario. 
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Figure 3.9. Average Cost of Weatherizing a Low-income House by City and 
Treatment Scenario. 
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Figure 3.10 Average Simple Payback Period for Weatherizing a Low-income House 
by City and Treatment Scenario. 
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Figure 3.11. Average Net Present Value of Weatherizing a Low-income House by 
City and Treatment Scenario. 
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 Figure 3.12. Average End-use Energy Abatement Cost for Weatherizing a Low-

income House by City and Treatment Scenario. 
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3.2.3 Carbon savings 

 It is useful to estimate how the energy savings shown in Figure 3.7 translate into 

carbon abatement. As discussed in Chapter 1, scientists and policy-makers addressing 

climate change are interested in the carbon savings potential of energy reduction 

measures, such as weatherization. We calculated carbon saving by translating the energy 

savings and their associated energy mix into its associated CO2 emissions. Figure 3.13 

illustrates our carbon savings estimates. This graph in many ways looks similar to Figure 

3.7, with colder climates generally saving more carbon than warmer climates, but 

noticeably Orlando, which was among the lowest energy savers, is among the highest 

carbon savers. As previously discussed, whereas all the other cities’ housing stock rely on 

natural gas for most of its space conditioning energy, the Orlando housing stock uses 

electricity exclusively. As presented in Figure 2.10 (p. 47), Florida’s electricity, which 

emits 393 lbs CO2 per MMBTU (EPA 2010), is more than three times as carbon intensive 

as natural gas, which emits 117 lbs CO2 per MMBTU (EIA 2009c).  

 There are a few different ways to consider measuring the carbon abatement cost-

effectiveness of weatherization treatments. While a comprehensive, all-inclusive, NPV 

analysis is valuable to consider the full direct benefits of weatherization (as we do 

below), the cost of carbon abatement without counting the value of energy savings is a 

useful measure for weatherization funders (e.g. government agency, non-profit, or private 

company). In most, if not all instances of weatherization assistance, the residents—not 

the weatherization funder—reap the direct monetary value of any achieved energy 

savings. Without the monetary incentive of energy savings, the funder may instead be 

motivated to achieve the most cost-effectiveness carbon abatement. Figure 3.14 illustrates 
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this cost-effectiveness by displaying the cost of each treatment scenario per ton of carbon 

abated per year over the lifetime of treatment scenario. This graph is effectively Figure 

3.9 divided by Figure 3.13. From this graph, we infer that installing thermostats is 

similarly cost-effective in each of the cities examined. There is a clear pattern across the 

rest of the treatment scenarios that Los Angeles is the least cost-effective (due to very 

low carbon savings) followed by Orlando (due to high attic insulation costs and low 

carbon savings from air sealing) and Seattle (due to relatively low carbon savings). The 

remaining cities—Philadelphia, Detroit, and Milwaukee—are all similarly cost-effective 

across all treatment scenarios because they share both common treatment costs and 

carbon savings.  

  As discussed above, a more comprehensive cost-effectiveness analysis looks at 

the NPV of weatherization, which is the metric we used to more thoroughly examine how 

the feasibility of weatherization varied by city. Just as an energy abatement cost graph 

(Figure 3.12) is useful in determining the financial feasibility of a project when there 

exists an energy tax, a carbon abatement curve (Figure 3.15) is useful for considering the 

financial feasibility of a project when there exists a carbon tax. But unlike the energy tax, 

which has received little mention or major consideration in many years, the idea of a 

carbon tax, or at least a carbon price, is incredibly relevant. In the face of worsening 

climate change, many policy-makers seek to curb climate change through use of price-

instruments, either through a cap-and-trade system or a carbon tax. This carbon 

abatement graph is especially relevant among discussions of a carbon tax as a price-

instrument to reduce carbon emissions in order to curb climate change. Although it has 

been proposed in many pieces of recent legislation, the US is yet to establish a 
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nationwide carbon pricing system. The cap-and-trade system proposed by the American 

Clean Energy and Security Act (HR 2454) would set a minimum price of $10/ton C, or 

$2.73/ton CO2, in 2012, and this price floor would increase at a annual rate of 5% plus 

inflation (111th United States Congress 2009b sec. 791). Economic models suggest that 

limiting atmospheric concentration of CO2 to two times pre-industrial levels and limiting 

average global warming to 2.5°C required a carbon price in 2005 of about $30/ton C, or 

$8.18/ton CO2, increasing linearly to $85/ton C, or $23.20/ton CO2 by the middle of the 

century (Nordhaus 2007).  

 We recall from Section 3.1 that our model exhibited significant error for some 

treatment scenarios when compared to observed energy savings. As a first-order error 

correction method, we multiplied the expected energy savings in each treatment scenario 

by a correction factor derived from our model evaluation in Section 3.1. We developed 

two different correction factors for each treatment scenario to account for different levels 

of model error. We defined the mean error correction factor as the ratio of the observed 

energy savings from the CWP evaluation to the modeled energy savings for 

Philadelphia’s low-income housing stock. We defined the extreme error correction factor 

as the ratio of upper 90% confidence limit for the modeled results and the lower 90% 

confidence limit of the observed results. By its definition, the extreme error correction 

factor is greater than the mean correction factor, and so the extreme error correction 

factor provides a more conservative energy savings estimate as it implies greater model 

error. This extreme correction factor corresponds to a very low confidence in our results 

and could be interpreted as a worst-case scenario factor. For treatment scenarios in which 

modeled savings exceeded observed savings, we set the correction coefficient to 1, 
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leaving the energy savings estimate unaltered. Table 3.1 presents both the mean error and 

extreme error correction factors for each treatment scenario. Figure 3.16 and Figure 3.17 

illustrate the carbon abatement costs when adjusting for the mean model error and 

extreme model error, respectively.  

 To express some of the uncertainty surrounding treatment costs, these figures also 

include error bars to illustrate 50% of the expected treatment scenario cost. From this, we 

can identify which measures’ abatement costs are more elastic than others. The 

abatement cost of thermostats in all cities, for instance, does not vary significantly with 

price, in part because they are very inexpensive. The abatement cost of attic insulation, 

however, is much more elastic, because installation costs and energy cost savings vary 

significantly among the cities modeled.  

 The effect of the correction factor is noticeable. Before applying a correction 

factor (Figure 3.15), our analysis suggested that all treatment scenarios were profitable, 

with the exception of two treatment scenarios for Los Angeles-Long Beach. After 

applying the mean error correction factor (Figure 3.16), most treatment scenarios in most 

cities still remain profitable or at least less than $20/ton CO2, even with a 50% treatment 

cost inflation. Applying the extreme error correction factor (Figure 3.17) brings the 

abatement costs of most treatment scenarios in most of the cities within a range 0 ± 

$20/ton CO2, and most still remain around or below the American Clean Energy and 

Security Act proposed initial carbon price floor of $8.18/ton CO2. Thermostats remain 

significantly profitable throughout any correction scenario, demonstrating that 

thermostats are a reliable and profitable investment in any of the cities modeled. 
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Table 3.1. Treatment Scenario Correction Factors Applied to Figure 3.16 and 
Figure 3.17. 

Treatment scenario T A S S & T A & T A & S 
Mean error correction 

factor (Figure 3.16) 1* 1* 0.62 0.45 0.76 0.54 

Extreme error correction 

factor (Figure 3.17) 0.66 0.50 0.32 0.28 0.44 0.36 

         

* indicates that observed savings exceeded modeled savings 
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Figure 3.13. Average Annual Carbon Savings from Weatherizing a Low-income 
House by City and Treatment Scenario.  
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Figure 3.14. Average Carbon Abatement Cost for Weatherizing a Low-income 
House by City and Treatment Scenario, Omitting the Value of Energy Savings. 
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 Figure 3.15. Average Carbon Abatement Cost for Weatherizing a Low-income 

House by City and Treatment Scenario. 
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 Figure 3.16. Average Carbon Abatement Costs for Weatherizing a Low-income 

House by City and Treatment Scenario, Adjusted for Mean Model Error. Error bars 

indicate range of abatement costs for treatment  costs ± 50%. 
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 Figure 3.17. Average Carbon Abatement Cost for Weatherizing a Low-income 

House by Treatment Scenario and City, Adjusted for Extreme Model Error. Error 

bars indicate range of abatement costs for treatment costs ± 50%. 
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4 CONCLUSIONS 

The Obama Administration has placed energy efficiency at the core of its energy policies, 

and it has emphasized residential weatherization as a particularly advantageous means of 

achieving energy efficiency. In addition to reducing household energy consumption and 

lowering energy bills, weatherization also carries the benefits of reducing dependence on 

foreign energy sources and lowering residential greenhouse gas emissions while creating 

jobs and improving outdoor air quality. Past studies have estimated the cost-effectiveness 

of weatherization programs at a national scale, but have not examined how cost-

effectiveness varies geographically due to differences in climate, housing stock, and 

energy prices. The purpose of our research was to develop an approach that could model 

the cost-effectiveness of weatherization programs in urban areas across the U.S. and to 

verify this model by comparing model estimates to observed energy savings from various 

retrofit treatments in one urban area. This chapter discusses our conclusions and our 

recommendations for future work in the area of housing stock energy modeling. 
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4.1 ANALYSIS 

Our findings demonstrated that the concept of city-level weatherization cost-effectiveness 

analysis is not only possible, but also valuable in determining where weatherization 

programs could have the greatest impact. Based on these results, we can refine 

conclusions about the potential cost-effectiveness of weatherization for low-income 

urban housing that other studies made using national data. 

Most weatherization treatments examined are profitable 

 Although cost-effectiveness varies significantly between cities and treatment 

scenarios, almost all treatments in the cities examined were NPV-positive over either a 7 

or 15 year period. These results indicate that we would expect the present value of energy 

savings earned through weatherization to exceed weatherization installation costs for 

programmable thermostats, attic insulation, and air sealing. 

Greater energy efficiency will be realized by retrofitting houses in colder 

climates 

 Following trends predicted from national data, urban houses in colder climates 

consume more energy for space conditioning than houses in warmer climates. 

Furthermore, many of the cities in these cold climates are located in the Northeast and 

Midwest Census regions, which have leakier and older housing stock than the South or 

West. Older houses tend to be less energy-efficient than newer houses, and our analysis 

suggests that older urban housing stock in cold climate zones may have the greatest 

potential for saving energy by weatherization retrofitting. 
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Regional variations in energy prices significantly affect the cost-effectiveness of 

weatherization retrofits 

 As exemplified in Orlando and Detroit, differences in energy prices can outweigh 

differences in energy savings in a cost-effectiveness analysis. Although retrofits saved 

less energy in Orlando than in Detroit, because Orlando had the most expensive and 

Detroit had the least expensive energy prices, Orlando’s low-income housing stock was 

among the most profitable to retrofit, as measured by NPV, and Detroit’s was among the 

least profitable.    

Greater carbon efficiency can be realized by retrofitting houses with electric 

space conditioning compared to oil or natural gas 

 Relatively low-carbon natural gas provided most of the space conditioning energy 

in five of the six cities examined, but carbon-intensive electricity provided all of the 

space conditioning energy in Orlando, making the city’s low-income housing stock a 

consistent top carbon saver across all weatherization treatments despite it being one of 

the lowest end-use energy savers. Until houses can access electricity from cleaner energy 

sources—either from cleaner energy on the electrical grid or from onsite renewable 

technologies such as photovoltaic solar panels—houses that rely on conventional electric 

heating and cooling systems will continue to be the largest source of potential carbon 

savings from retrofits. 

Weatherization strategies aimed at energy savings, carbon savings, and cost-

effectiveness may not lead to the same conclusion 

Because average energy consumption, carbon intensity of energy consumed, and 

energy prices all vary geographically and largely independently, energy savings, carbon 

savings, and cost-effectiveness are not necessarily aligned. Weatherization strategies that 

seek to minimize residential energy use may not be the same strategies that seek to 
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minimize residential carbon emissions. Additionally, there are different ways to consider 

cost-effectiveness, including net present value or by abatement cost for energy or carbon. 

In evaluating existing and designing new weatherization programs, it will be important 

for policy-makers to recognize these differences and decide the priorities of 

weatherization programs. 

Programmable thermostats provide cost-effective savings in any setting 

 Of the weatherization treatments examined, replacing standard thermostats with 

programmable thermostats were a consistent source of carbon and energy savings across 

all cities. In the comparison between modeled and observed energy savings, which may 

indicate that thermostats are among the treatments least susceptible to shortfall and take-

back. Installing programmable thermostats requires minimal training, so the likelihood of 

improper installation is small. Additionally, since programmable thermostats are 

automatic, as long as residents do not interfere with set heating and cooling schedules, 

there is minimal opportunity for behavioral changes to alter the thermostat’s 

effectiveness. 
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4.2 LIMITATIONS AND AREAS FOR FUTURE WORK 

The approach developed for the research is useful for comparing how the average cost-

effectiveness of different retrofitting treatments will vary geographically due to 

differences in climate, housing stock, and energy prices. There are, however, several 

limitations to this approach.  

 First, there are occasionally large discrepancies between modeled and observed 

energy savings. This does not necessarily indicate that the HES model is incorrect, only 

that modeled energy results do not reflect observed results. Energy modeling literature 

attributes this primarily to modeling errors, improper retrofitting installation errors, or 

changes in resident’s energy consumption behavior. Because the model determines 

energy savings using DOE-2, a comprehensive physical model—as opposed to statistical 

models, for instance—it seems unlikely that the model itself is a primary source of error. 

The model’s usefulness, however, hinges upon the data used to drive it, so modeling error 

can be minimized by driving HES with more detailed information than AHS provides. 

We expect that these errors are systematic and affect each modeling run similarly, so it is 

unlikely that any such error would significantly change the qualitative results of our 

analysis (e.g. which housing stocks are more cost-effective to weatherize), but it would 

affect the quantitative details of the results (e.g. the exact quantities of energy saved). As 

such, our approach is still useful for comparing weatherization cost-effectiveness among 

different housing stocks. 

 It is important to emphasize that this approach should only be used to examine the 

average cost-effectiveness of a specific housing stock. Because the physical 

characteristics of houses vary depending on design, construction methods, and use, any 
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housing stock will be heterogeneous, so even if weatherization treatments were applied 

uniformly—which evaluations show they are not—the actual energy savings and 

retrofitting costs can vary widely even within a designated housing stock. While our 

approach may poorly model any one house, we expect that it reasonably models the 

average energy consumption and savings from many houses.  

 Errors in this assumption could be decreased by calculating average energy 

consumption and savings from larger sample sizes. The AHS National microdata we used 

may not provide the larger sample size required for a more thorough analysis, but data in 

the AHS Metropolitan supplement might. This supplement provides the same information 

as the National microdata we used, except for a larger sample size in 41 metropolitan 

areas. Using HES for such modeling is presently time-consuming as it requires inputting 

data one value at a time. Thus, the future completion of a batch capability will facilitate 

the process of modeling many houses, which would be required for analysis using data 

from the AHS Metropolitan supplement. 

 In addition to potential data and modeling shortcomings, there is substantial 

uncertainty surrounding our energy and retrofit cost estimates, and more specifically how 

these costs will change in the future. Our cost analysis assumed that energy and retrofit 

prices remained constant. We employed a discount rate of 7% for all future money flows, 

but this rate could fluctuate depending on future energy and retrofit cost prices relative to 

the rate of inflation. We expect that the cost of implementing the weatherization 

treatments we examined would not increase, but it may decrease as technological 

advancements lower weatherization installation costs, making retrofits more cost-

effective than we modeled. It is much more difficult to predict the future behavior of 
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energy prices, as there are occasionally major market perturbations. For example, recent 

advancements in natural gas recovery technology have significantly increased domestic 

gas reserves. Energy analysts forecast the resulting increase in gas supply with keep 

prices uncharacteristically low in the next few years as the price of other forms of energy 

continue to grow (Schlesinger 2010). Unusually low gas prices decrease the value of 

energy savings and the cost-effectiveness of weatherization in houses that use gas for 

space conditioning, making houses that rely on other energy sources like fuel oil and 

electricity comparatively more cost-effective. 

 Although this project was designed to model the low-income urban housing stock, 

our approach is not limited to this application. Our approach could be extended to model 

the cost-effectiveness of weatherization treatments on housing stocks on any level, 

including upper-income stock and non-urban housing stock, although the usefulness of 

the average energy consumption and savings determined from such modeling will depend 

on how the housing stock is defined. 
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APPENDIX A: RESEARCH METHODS DETAILS 

This Appendix discusses this thesis’s research methods in greater detail . The first section 

specifies which AHS data we used to drive HES. The second section provides details 

about how we drove HES with AHS data to model house’s energy consumption and 

expected savings from weatherization treatments. The third section demonstrates how we 

calculated the expected values of energy consumption and energy savings from modeled 

results of individual houses. The final section describes how we used AHS and HES to 

calculate the expected contribution of water heating to houses’ natural gas energy 

consumption. 
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A.1 AMERICAN HOUSING SURVEY 

In its raw form, American Housing Survey public microdata are divided into six different 

files. In this project, we used the datasheets called NEWHOUSE. NEWHOUSE contains 

data at the household level and includes information about the housing unit. Table A-1 

lists the variables used for this project. 

 
Table A-1. List of American Housing Survey Variables Used. 

Variable name Definition 
WEIGHT Final weight 

VACANCY Vacancy status 

TYPE Housing unit type 

UNITSF Square footage of unit (conditioned only) 

NUNIT2 Are these living quarters in a… 

HEQUIP Main heating equipment 

HFUEL Fuel used most for heating unit 

AIR Room air conditioner 

AIRSYS Central air conditioner 

AFUEL Type of fuel used for air conditioners 

FLOORS Number of stories in building 

SMSA 1980 design PMSA code 

METRO3 Central city / suburban status 

BUILT Year unit was built 

DEGREE Average heating/cooling degree days 

ZINC2 Household income 

PER # of persons in household 

POOR Household income as percentage of poverty line 

CELLAR Unit has a basement 

 



 

A-3 

A.2 HOME ENERGY SAVER 

To begin a session, HES requires the input of the ZIP code within which the house is 

located. HES uses the ZIP code to locate the city where the house is for purposes of 

estimating the climate conditions and housing characteristics typical for that area. For all 

houses within a city, we used the same zip code. Table A-2 lists the zip codes used for 

each city. 

 
Table A-2. ZIP codes used for HES modeling. 

City ZIP code 

Milwaukee 53201 

Detroit 48201 

Seattle 98101 

Philadelphia 19019 

Los Angeles-Long Beach 90001 

Orlando 32801 

 
HES initially asks nineteen questions for a “simple” level of calculation. These questions 

provide the most basic level of information required for HES to model energy 

consumption. Below are the questions that we answered with AHS data, along with 

specific instructions how we used AHS data to answer it. All other questions were left 

blank, in which case HES inserts a default value pre-determined from RECS for a typical 

single-family, detached house in the appropriate Census region. 

 
2. Which city has the most similar climate to your house? 

 

From the ZIP code, HES identifies several cities closet to the zip code in terms of 

location and climate based on several different sources of historical weather information. 

HES included each of the cities we modeled as an option, so in each instance we selected 

that city. 
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3. Year your house was built 

 

AHS provides this information in the BUILT variable. AHS indicates if a house was built 

by decade for 1920-1969, by half-decade for 1970-1999, and by year for 2000-2005. 

AHS also indicates if the house was built before 1920. We input the year built as the 

beginning of the period that AHS indicates. For example, if AHS lists the house vintage 

as 1920-1929, we input the house age as 1920. For houses built before 1920, we input 

that they were built in 1919.  

 

4. What is the conditioned floor area? 

 
AHS provides this information in the UNITSF variable. In a small number of samples, this 

parameter was blank in the AHS data. When this happened, we left this parameter blank 

and AHS inserts the appropriate default parameter. 

 
5. How many stories above ground level are there? 

 

AHS provides this information in the FLOORS variable. 
 

 
7. What type of foundation does your house have? 

 
AHS provides this information in the CELLAR variable. 
 
 

15. What kind of heating equipment do you have? 

 

AHS provides this information in the HEQUIP and HFUEL variables, which indicate the 

house’s main heating equipment and fuel, respectively. 

 

 

16. What kind of cooling equipment do you have? 

 

AHS provides this information in the AIR and AIRSYS variables. HES does not provide the 

option to select natural gas as the cooling energy source, but this was not an issue in our 
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study since the variable AFUEL indicated all houses we modeled had electric air 

conditioning.  

 

19. Please tell us how many people living in your house fall into the 

following groups.  

 

AHS provides the number of residents in the PER variable. This specific question asks 

how many residents fall with four different age brackets: 0 to 5 years, 6 to 13 years, 14 to 

64 years, and 65 years and older. Since AHS does not provide the age composition of the 

residents, we assumed an age composition for each of the PER values observed in this 

study. Table A-3 lists our assumed age compositions. 

Table A-3. Assumed Resident Age Composition Corresponding to AHS PER 
Variable. 

PER 6 to13 years 14 to 64 years 

1 0 1 

2 0 2 

3 1 2 

4 2 2 

5 3 2 

6 4 2 

 

 Among the many other parameters HES allows users to specify, one is house 

shape. In this study, we modeled both attached and detached single-unit houses. AHS 

indicates which houses are attached and which houses are detached in the NUNIT2 

variable. To model detached houses, we used AHS’s default house geometry of a 

“rectangle,” detached house. To model attached houses, AHS allows users to select 

“townhouse” or shape and indicate whether the house is in the end or middle of the row. 

To calculate the average energy consumption of an attached house, we calculated the 
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expected value of energy consumption applying a weight of 5 middle per 1 end 

townhouse. 

 After entering as much data as the user desires, HES calculates expected energy 

consumption and allows the user to model different retrofit treatments. Figure A-1 is a 

screenshot from HES’s retrofit selection page displaying the different retrofit options. 

 

 
 

Figure A-1. Screenshot of Home Energy Saver Retrofit Selection Page. 
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 After selecting which retrofit treatments to model, HES will calculate expected 

energy savings and report these savings by end-use and fuel (when applicable). Figure A-

2} is a screenshot of one of the result pages. From these result pages, we read the 

modeled space heating and cooling energy consumptions and savings. Since the 

interaction between retrofit treatments is complex, each treatment scenario was modeled 

individually for each house. 

 

 
 

Figure A-2. Screenshot of Home Energy Saver Results Page. 
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A.3 SAMPLE SPACE CONDITIONING EXPECTED VALUE CALCULATIONS 

For each of the six cities we modeled, we calculated the average energy consumed for 

space conditioning and saved for each weatherization treatment. In some instances, such 

as houses that have gas space heating and electric space cooling, it was necessary to 

converted the reported energy values (therms for gas, kWh for electricity, gallons for fuel 

oil) to a common unit. MMBTU is a standard unit for space conditioning, so we 

converted to MMBTU using common conversion factors (0.1 therm/MMBTU, 293 

kWh/MMBTU, 0.072 fuel oil gallons/MMBTU), and then summed each energy source 

and end-use to calculate the total space conditioning energy consumption for each house 

modeled. Figure A-3 displays the results of this model and calculation for the 7 houses 

modeled for the comparison of observed to modeled energy savings. We calculated the 

expected value of energy consumption (or savings) using the quantity of energy 

consumption (or savings) modeled and the weights AHS calculated and indicated in the 

WEIGHT variable.  

 While AHS indicates there are 11 low-income urban houses in the Philadelphia 

metropolitan region included 11 units, for our comparison of observed to modeled results 

we only considered the 7 units identified as AHS as existing in the center city of the 

metropolitan area, indicated in the SMSA variable. We did, however, consider all 11 low-

income urban units for purposes of modeling how the cost and effect of retrofits varied 

among metropolitan areas. 
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Figure A-3. Modeled Pre-retrofit Space Conditioning Energy Consumption. Houses 

numbered 1, 2, 5, and 6 were attached houses. “Expected value” is the weighted 

average of the houses’ space conditioning energy consumption. 

 
Similar to Figure A-3, Figure A-4 shows how the modeled energy savings varied for each 

of the different houses modeled under each of the different treatment scenarios. 
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Figure A-4. Energy Savings for Different Treatment Scenarios. Houses numbered 1, 

2, 5, and 6 were attached houses. “Expected value” is the weighted average of the 

houses’ space conditioning energy savings. 
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A.4 WATER HEATING CALCULATIONS 

Within our AHS subset of low-income houses in the central city of the Philadelphia 

metropolitan area, all 7 of the samples use natural gas water heaters, as indicated in the 

survey’s WFUEL variable. Therefore, rather than compare observed to modeled space 

heating energy consumption, we measured natural gas consumption, which we calculated 

from HES as the sum of space heating and water heating consumption.  

 HES divides water heating into three end-uses: taps and faucets, dishwashers, and 

clothes washers. HES allows users to indicate whether or not a house has a dishwasher 

and clothes washer, and we used AHS to determine if each house we modeled had these 

appliances. AHS indicates in the DISH variable that only two of the samples, representing 

35% of the population, have dishwashers. AHS also indicates in the DRY variable that 

82% of these homes have clothes dryers, from which we inferred that these homes also 

had clothes washers. According to the HES results, clothes washers, dishwashers, and 

taps and faucets consume an average of 9.7, 2.8, and 15.5 MMBTU/yr in houses that 

have all of those features. 

 


